Tacking Simulation of Sailing Yachts With New Model of Aerodynamic Force Variation During Tacking Maneuver.
By Yutaka Masuyama and Toichi Fukasawa
Abstract: A mathematical model for the tacking maneuver of a sailing yacht is presented as an extension of research by the same authors. The authors have proposed the equations of motion for the tacking maneuver expressed in the horizontal body axis system. The calculation method was applied to a 34-foot sailing cruiser and the simulated result showed good agreement with the measured data from full-scale tests; however, the modeling of aerodynamic force variation during tacking was insufficient due to lack of information about the sail forces. In this report, the authors performed full-scale measurement of sail forces during tacking maneuvers using a sail dynamometer boat Fujin. The Fujin is a 34-foot sailing cruiser which has a measurement system to obtain simultaneously sail forces, sail shapes, and boat attitude. Based on the results of full-scale measurements, a new model of aerodynamic force variation for the tacking maneuver was proposed. The equations of motion were also simplified to more easily perform the numerical simulation. Using this calculation method, the tacking simulations were performed and compared with the measured data from three full-scale boats. The simulated results showed good agreement with the measured data. This simulation method provides an effective means for assessment of tacking performance of general sailing yachts.
PDF