# ROPAX FERRY FOR THE GULF OF ST. LAWRENCE

#### DR. JAMES A. LISNYK STUDENT SHIP DESIGN COMPETITION

MAY 2023





TIA BUTTON ROBERT CAULFEILD ALEXIS BENJAMIN KEVIN WALL





## **STUDENT CERTIFICATION**

Memorial University of Newfoundland and Labrador

#### Dr. James A. Lisnyk Student Ship Design Competition

#### **Student Design Team Members**

The following members were part of the design team:

| Student Name     | Signature     |
|------------------|---------------|
| Tia Button       | Lia Batter    |
| Robert Caulfeild | Rate          |
| Alexis Benjamin  | Aleto Bazamon |
| Kevin Wall       | Athall        |

Memorial University of Newfoundland and Labrador

Dr. James A. Lisnyk Student Ship Design Competition

#### Faculty Advisor Statement

By this statement, I certify that the work done for this design competition was completed by the student team members.

Faculty Advisor

Dr. Brian Veitch May 26. 2023





# TABLE OF CONTENTS

| LIST OF TABLES                                                                                                                                                                                                                                                                                                                                                                                                                                          | IST OF TABLES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             | ST OF FI                                                                                                                     | GURES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | V        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| LIST OF ABBREVIATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                   | IST OF ABBREVIATIONS VII<br>ACKNOWLEDGEMENTS VIII<br>UMMARY IX<br>INTRODUCTION IX<br>BACKGROUND INFORMATION 1<br>2.1 MARINE ATLANTIC 1<br>2.2 ROUTE 1<br>2.3 OPERATIONAL PROFILE 2<br>2.4 ENVIRONMENTAL CONDITIONS 3<br>REQUIREMENTS 6<br>DESIGN CONSIDERATIONS 6<br>4.1 BOARDING INFRASTRUCTURE 6<br>4.2 CREWING 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LI          | ST OF TA                                                                                                                     | ABLES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | v        |
| ACKNOWLEDGEMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                        | ACKNOWLEDGEMENTS       VIII         NUMMARY       IX         INTRODUCTION       1         BACKGROUND INFORMATION       1         2.1       MARINE ATLANTIC       1         2.2       ROUTE       1         2.3       OPERATIONAL PROFILE       2         2.4       ENVIRONMENTAL CONDITIONS       3         REQUIREMENTS       6         DESIGN CONSIDERATIONS       6         4.1       BOARDING INFRASTRUCTURE       6         4.2       CREWING       7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LI          | ST OF AE                                                                                                                     | BBREVIATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | VII      |
| SUMMARY         1       INTRODUCTION         2       BACKGROUND INFORMATION         2.1       MARINE ATLANTIC.         2.2       ROUTE.         2.3       OPERATIONAL PROFILE         2.4       ENVIRONMENTAL CONDITIONS.         3       REQUIREMENTS.         4       DESIGN CONSIDERATIONS         4.1       BOARDING INFRASTRUCTURE         4.2       CREWING.         4.3       PASSENGER AND CREW ACCOMMODATIONS.         4.4       TYPICAL LOADS | IX INTRODUCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A           | скломі                                                                                                                       | LEDGEMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | VIII     |
| 1       INTRODUCTION         2       BACKGROUND INFORMATION         2.1       MARINE ATLANTIC         2.2       ROUTE         2.3       OPERATIONAL PROFILE         2.4       ENVIRONMENTAL CONDITIONS         3       REQUIREMENTS         4       DESIGN CONSIDERATIONS         4.1       BOARDING INFRASTRUCTURE         4.2       CREWING         4.3       PASSENGER AND CREW ACCOMMODATIONS         4.4       TYPICAL LOADS                       | INTRODUCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | รเ          | JMMAR                                                                                                                        | Υ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | IX       |
| 2       BACKGROUND INFORMATION         2.1       MARINE ATLANTIC.         2.2       ROUTE.         2.3       OPERATIONAL PROFILE         2.4       ENVIRONMENTAL CONDITIONS.         3       REQUIREMENTS.         4       DESIGN CONSIDERATIONS         4.1       BOARDING INFRASTRUCTURE         4.2       CREWING.         4.3       PASSENGER AND CREW ACCOMMODATIONS         4.4       TYPICAL LOADS                                               | BACKGROUND INFORMATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1           | INTE                                                                                                                         | RODUCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1        |
| 2.1       Marine Atlantic                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.1       MARINE ATLANTIC.       1         2.2       ROUTE.       1         2.3       OPERATIONAL PROFILE       2         2.4       ENVIRONMENTAL CONDITIONS.       3 <b>REQUIREMENTS</b> . <b>6 DESIGN CONSIDERATIONS</b> .         4.1       BOARDING INFRASTRUCTURE       6         4.2       CREWING.       7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2           | BAC                                                                                                                          | KGROUND INFORMATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1        |
| 2.2       ROUTE                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.2       ROUTE.       1         2.3       OPERATIONAL PROFILE       2         2.4       ENVIRONMENTAL CONDITIONS.       3         REQUIREMENTS.         6         DESIGN CONSIDERATIONS         6         4.1       BOARDING INFRASTRUCTURE       6         4.2       CREWING.       7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | 2.1                                                                                                                          | Marine Atlantic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1        |
| <ul> <li>2.3 OPERATIONAL PROFILE</li> <li>2.4 ENVIRONMENTAL CONDITIONS</li> <li>3 REQUIREMENTS</li> <li>4 DESIGN CONSIDERATIONS</li> <li>4.1 BOARDING INFRASTRUCTURE</li> <li>4.2 CREWING</li> <li>4.3 PASSENGER AND CREW ACCOMMODATIONS</li> <li>4.4 TYPICAL LOADS</li> </ul>                                                                                                                                                                          | 2.3       OPERATIONAL PROFILE       .2         2.4       ENVIRONMENTAL CONDITIONS       .3         REQUIREMENTS         6         DESIGN CONSIDERATIONS         6         4.1       BOARDING INFRASTRUCTURE       .6         4.2       CREWING       .7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | 2.2                                                                                                                          | Route                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1        |
| 2.4       Environmental Conditions.         3       REQUIREMENTS.         4       DESIGN CONSIDERATIONS .         4.1       BOARDING INFRASTRUCTURE .         4.2       CREWING                                                                                                                                                                                                                                                                         | 2.4       ENVIRONMENTAL CONDITIONS       .3         REQUIREMENTS         6         DESIGN CONSIDERATIONS         4.1       BOARDING INFRASTRUCTURE       .6         4.2       CREWING       .7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 2.3                                                                                                                          | OPERATIONAL PROFILE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2        |
| <ul> <li>3 REQUIREMENTS</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                       | REQUIREMENTS       6         DESIGN CONSIDERATIONS       6         4.1       BOARDING INFRASTRUCTURE       6         4.2       CREWING       7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 2.4                                                                                                                          | Environmental Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3        |
| <ul> <li>4 DESIGN CONSIDERATIONS</li> <li>4.1 BOARDING INFRASTRUCTURE</li> <li>4.2 CREWING</li> <li>4.3 PASSENGER AND CREW ACCOMMODATIONS</li> <li>4.4 TYPICAL LOADS</li> </ul>                                                                                                                                                                                                                                                                         | DESIGN CONSIDERATIONS       6         4.1       BOARDING INFRASTRUCTURE       6         4.2       CREWING       7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3           | REQ                                                                                                                          | UIREMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6        |
| <ul> <li>4.1 BOARDING INFRASTRUCTURE</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                          | 4.1         BOARDING INFRASTRUCTURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4           | DES                                                                                                                          | IGN CONSIDERATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6        |
| <ul> <li>4.2 Crewing</li> <li>4.3 Passenger and Crew Accommodations</li></ul>                                                                                                                                                                                                                                                                                                                                                                           | 4.2 CREWING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             | 4.1                                                                                                                          | BOARDING INFRASTRUCTURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6        |
| <ul> <li>4.3 PASSENGER AND CREW ACCOMMODATIONS</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             | 4.2                                                                                                                          | CREWING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.3 PASSENGER AND CREW ACCOMMODATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             | 4.3                                                                                                                          | Passenger and Crew Accommodations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.4 Typical Loads                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | 4.4                                                                                                                          | Typical Loads                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8        |
| 4.5 Parametric Study                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             | 4.5                                                                                                                          | Parametric Study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9        |
| 5 PROPULSION OPTION ANALYSIS                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.5 PAKAMETRIC STUDY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5           | PRO                                                                                                                          | PPULSION OPTION ANALYSIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10       |
| 5.1 FUELTYPE                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.5 PARAMETRIC STUDY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |
| 5.2 MACHINERY CONFIGURATION                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.5         PARAMETRIC STUDY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             | 5.1                                                                                                                          | FUEL TYPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |
| 6 ICE CLASS                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.5         PARAMETRIC STUDY         9           PROPULSION OPTION ANALYSIS         10           5.1         FUEL TYPE         10           5.2         MACHINERY CONFIGURATION         11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             | 5.1<br>5.2                                                                                                                   | Fuel Type<br>Machinery Configuration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10<br>10 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.5       PARAMETRIC STUDY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6           | 5.1<br>5.2                                                                                                                   | Fuel Type<br>Machinery Configuration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |
| 6.1 ICE CLASS SELECTION                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.5       PARAMETRIC STUDY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6           | 5.1<br>5.2<br>ICE (                                                                                                          | Fuel Type<br>Machinery Configuration<br>CLASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |
| <ul> <li>6.1 Ice Class Selection</li> <li>6.2 Finnish-Swdish 1A Requirements</li> </ul>                                                                                                                                                                                                                                                                                                                                                                 | 4.5       PARAMETRIC STUDY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6           | 5.1<br>5.2<br>ICE (<br>6.1<br>6.2                                                                                            | FUEL TYPE<br>MACHINERY CONFIGURATION<br>CLASS<br>ICE CLASS SELECTION<br>FINNISH-SWDISH 1A REQUIREMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |
| <ul> <li>6.1 ICE CLASS SELECTION</li> <li>6.2 FINNISH-SWDISH 1A REQUIREMENTS</li></ul>                                                                                                                                                                                                                                                                                                                                                                  | 4.5       PARAMETRIC STUDY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6           | 5.1<br>5.2<br>ICE (<br>6.1<br>6.2<br>STR                                                                                     | FUEL TYPE<br>MACHINERY CONFIGURATION<br>CLASS<br>ICE CLASS SELECTION<br>FINNISH-SWDISH 1A REQUIREMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |
| <ul> <li>6.1 ICE CLASS SELECTION</li> <li>6.2 FINNISH-SWDISH 1A REQUIREMENTS</li></ul>                                                                                                                                                                                                                                                                                                                                                                  | 4.5       PARAMETRIC STUDY       .9         PROPULSION OPTION ANALYSIS       .10         5.1       FUEL TYPE       .10         5.2       MACHINERY CONFIGURATION       .11         ICE CLASS       .12         6.1       ICE CLASS SELECTION       .12         6.2       FINNISH-SWDISH 1A REQUIREMENTS       .14         STRUCTURE       .15         7.1       APPLICABLE REGULATIONS       .15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6<br>7      | 5.1<br>5.2<br>ICE (<br>6.1<br>6.2<br>STR(<br>7.1                                                                             | FUEL TYPE<br>MACHINERY CONFIGURATION<br>CLASS<br>ICE CLASS SELECTION<br>FINNISH-SWDISH 1A REQUIREMENTS<br>UCTURE<br>APPLICABLE REGULATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |
| 6.1       ICE CLASS SELECTION                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.5       PARAMETRIC STUDY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6<br>7      | 5.1<br>5.2<br>6.1<br>6.2<br><b>STR</b><br>7.1<br>7.2                                                                         | FUEL TYPE<br>MACHINERY CONFIGURATION<br>CLASS<br>ICE CLASS SELECTION<br>FINNISH-SWDISH 1A REQUIREMENTS<br>UCTURE<br>APPLICABLE REGULATIONS<br>FRAMING SYSTEM                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| 6.1       ICE CLASS SELECTION                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.5       PARAMETRIC STUDY       9         PROPULSION OPTION ANALYSIS       10         5.1       FUEL TYPE       10         5.2       MACHINERY CONFIGURATION       11         ICE CLASS       12         6.1       ICE CLASS SELECTION       12         6.2       FINNISH-SWDISH 1A REQUIREMENTS       14         STRUCTURE       15         7.1       APPLICABLE REGULATIONS       15         7.2       FRAMING SYSTEM       15         7.3       MATERIAL       15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6<br>7      | 5.1<br>5.2<br>6.1<br>6.2<br>5TR<br>7.1<br>7.2<br>7.3                                                                         | FUEL TYPE<br>MACHINERY CONFIGURATION<br>CLASS<br>ICE CLASS SELECTION<br>FINNISH-SWDISH 1A REQUIREMENTS<br>UCTURE<br>APPLICABLE REGULATIONS<br>FRAMING SYSTEM<br>MATERIAL                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |
| <ul> <li>6.1 ICE CLASS SELECTION</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                              | 4.5       PARAMETRIC STUDY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6<br>7      | 5.1<br>5.2<br>6.1<br>6.2<br><b>STRU</b><br>7.1<br>7.2<br>7.3<br>7.4                                                          | FUEL TYPE<br>MACHINERY CONFIGURATION<br>CLASS<br>ICE CLASS SELECTION<br>FINNISH-SWDISH 1A REQUIREMENTS<br>FINNISH-SWDISH 1A REQUIREMENTS<br>UCTURE<br>APPLICABLE REGULATIONS<br>FRAMING SYSTEM<br>MATERIAL<br>MIDSHIP SECTION MODULUS.                                                                                                                                                                                                                                                                                                                                                                          |          |
| 6.1       ICE CLASS SELECTION                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.5       PARAMIETRIC STUDY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6<br>7      | 5.1<br>5.2<br>6.1<br>6.2<br>7.1<br>7.2<br>7.3<br>7.4<br>7.5                                                                  | FUEL TYPE         MACHINERY CONFIGURATION         CLASS         ICE CLASS SELECTION         FINNISH-SWDISH 1A REQUIREMENTS         UCTURE         APPLICABLE REGULATIONS         FRAMING SYSTEM         MATERIAL         MIDSHIP SECTION MODULUS         HULL SCANTLINGS                                                                                                                                                                                                                                                                                                                                        |          |
| 6.1       ICE CLASS SELECTION                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.5       PARAMETRIC STUDY       9         PROPULSION OPTION ANALYSIS       10         5.1       FUEL TYPE       10         5.2       MACHINERY CONFIGURATION       11         ICE CLASS       11         ICE CLASS       12         6.1       ICE CLASS SELECTION       12         6.2       FINNISH-SWDISH 1A REQUIREMENTS       14         STRUCTURE       15         7.1       APPLICABLE REGULATIONS       15         7.2       FRAMING SYSTEM       15         7.3       MATERIAL       15         7.4       MIDSHIP SECTION MODULUS       15         7.5       HULL SCANTLINGS       16         7.6       VEHICLE DECK SCANTLINGS       17                                                                                                                                                                                                                                                                                                                                                                                                             | 6           | 5.1<br>5.2<br>6.1<br>6.2<br>7.1<br>7.2<br>7.3<br>7.4<br>7.5<br>7.6                                                           | FUEL TYPE<br>MACHINERY CONFIGURATION<br>CLASS<br>ICE CLASS SELECTION<br>FINNISH-SWDISH 1A REQUIREMENTS<br>UCTURE<br>APPLICABLE REGULATIONS<br>FRAMING SYSTEM<br>MATERIAL<br>MIDSHIP SECTION MODULUS<br>HULL SCANTLINGS<br>VEHICLE DECK SCANTLINGS                                                                                                                                                                                                                                                                                                                                                               |          |
| 6.1       ICE CLASS SELECTION                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.5       PARAMETRIC STUDY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6           | 5.1<br>5.2<br>6.1<br>6.2<br><b>STR</b><br>7.1<br>7.2<br>7.3<br>7.4<br>7.5<br>7.6<br>7.7                                      | FUEL TYPE<br>MACHINERY CONFIGURATION<br>CLASS<br>ICE CLASS SELECTION<br>FINNISH-SWDISH 1A REQUIREMENTS<br>UCTURE<br>APPLICABLE REGULATIONS<br>FRAMING SYSTEM<br>MATERIAL<br>MIDSHIP SECTION MODULUS<br>HULL SCANTLINGS<br>VEHICLE DECK SCANTLINGS<br>ICE STRENGTHENING                                                                                                                                                                                                                                                                                                                                          |          |
| 6.1       ICE CLASS SELECTION                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.5       PARAMIETRIC STUDY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6           | 5.1<br>5.2<br>6.1<br>6.2<br>7.1<br>7.2<br>7.3<br>7.4<br>7.5<br>7.6<br>7.7<br>7.8                                             | FUEL TYPE<br>MACHINERY CONFIGURATION<br>CLASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |
| 6.1       ICE CLASS SELECTION                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.3       PARAMETRIC STUDY       9         PROPULSION OPTION ANALYSIS       10         5.1       FUEL TYPE       10         5.2       MACHINERY CONFIGURATION       11         ICE CLASS       12         6.1       ICE CLASS SELECTION       12         6.2       FINNISH-SWDISH 1A REQUIREMENTS       14         STRUCTURE       15         7.1       APPLICABLE REGULATIONS       15         7.2       FRAMING SYSTEM       15         7.3       MATERIAL       15         7.4       MIDSHIP SECTION MODULUS       15         7.5       HULL SCANTLINGS       16         7.6       VEHICLE DECK SCANTLINGS       17         7.7       ICE STRENGTHENING       17         7.8       MIDSHIP SECTION       17         WEIGHT ESTIMATE       18                                                                                                                                                                                                                                                                                                               | 6<br>7<br>8 | 5.1<br>5.2<br>6.1<br>6.2<br>7.1<br>7.2<br>7.3<br>7.4<br>7.5<br>7.6<br>7.7<br>7.8<br>WEI                                      | Fuel Type         Machinery Configuration         class         Ice Class Selection         Finnish-Swdish 1A Requirements         UCTURE         Applicable Regulations         Framing System         Material         Midship Section Modulus         Hull Scantlings         Vehicle Deck Scantlings         Ice Strengthening         Midship Section         Midship Section                                                                                                                                                                                                                              |          |
| 6.1       ICE CLASS SELECTION                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.5       PARAMETRIC STUDY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6<br>7<br>8 | 5.1<br>5.2<br>ICE (<br>6.1<br>6.2<br><b>STR</b><br>7.1<br>7.2<br>7.3<br>7.4<br>7.5<br>7.6<br>7.7<br>7.8<br><b>WEI</b><br>8.1 | Fuel Type         Machinery Configuration         CLASS         Ice Class Selection         Finnish-Swdish 1A Requirements         UCTURE         Applicable Regulations         Framing System         Material         Midship Section Modulus         Hull Scantlings         Vehicle Deck Scantlings         Ice Strengthening         Midship Section         Midship Section         Franking Subjection         Midship Section         Modulus         Hull Scantlings         Vehicle Deck Scantlings         Ice Strengthening         Midship Section         Lightship Weights and Centres Estimate |          |
| 6.1       ICE CLASS SELECTION                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.5       PARAMULTRIC STUDY       19         PROPULSION OPTION ANALYSIS       10         5.1       FUEL TYPE       10         5.2       MACHINERY CONFIGURATION       11         ICE CLASS       12         6.1       ICE CLASS SELECTION       12         6.2       FINNISH-SWDISH 1A REQUIREMENTS       14         STRUCTURE       15         7.1       APPLICABLE REGULATIONS       15         7.2       FRAMING SYSTEM       15         7.3       MATERIAL       15         7.4       MIDSHIP SECTION MODULUS       15         7.5       HULL SCANTLINGS       16         7.6       VEHICLE DECK SCANTLINGS       17         7.7       ICE STRENGTHENING       17         7.8       MIDSHIP SECTION       17         7.8       MIDSHIP SECTI | 6<br>7<br>8 | 5.1<br>5.2<br>6.1<br>6.2<br>7.1<br>7.2<br>7.3<br>7.4<br>7.5<br>7.6<br>7.7<br>7.8<br>WEI<br>8.1<br>8.2                        | Fuel Type         Machinery Configuration         CLASS         Ice Class Selection         Finnish-Swdish 1A Requirements         UCTURE         Applicable Regulations         Framing System         Material         Midship Section Modulus         Hull Scantlings         Vehicle Deck Scantlings         Ice Strengthening         Midship Section         Midship Section         Franking Support         Util Scantlings         Uet the Deck Scantlings         Ice Strengthening         Midship Section         Midship Section         Deadweight Estimate                                       |          |
| <ul> <li>4.3 PASSENGER AND CREW ACCOMMODATIONS</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             | 4.2                                                                                                                          | CREWING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7        |
| 4.3 PASSENGER AND CREW ACCOMMODATIONS                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             | 4.2                                                                                                                          | CREWING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7        |
| <ul> <li>4.2 CREWING</li> <li>4.3 PASSENGER AND CREW ACCOMMODATIONS</li></ul>                                                                                                                                                                                                                                                                                                                                                                           | 4.2 CREWING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             | 4.1                                                                                                                          | BOARDING INFRASTRUCTURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6        |
| <ul> <li>4.1 BOARDING INFRASTRUCTURE</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                          | 4.1         BOARDING INFRASTRUCTURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4           | DES                                                                                                                          | IGN CONSIDERATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6        |
| <ul> <li>4 DESIGN CONSIDERATIONS</li> <li>4.1 BOARDING INFRASTRUCTURE</li> <li>4.2 CREWING</li> <li>4.3 PASSENGER AND CREW ACCOMMODATIONS</li> <li>4.4 TYPICAL LOADS</li> </ul>                                                                                                                                                                                                                                                                         | DESIGN CONSIDERATIONS       6         4.1       BOARDING INFRASTRUCTURE         4.2       CREWING         7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3           | REQ                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6        |
| 3       REQUIREMENTS         4       DESIGN CONSIDERATIONS         4.1       BOARDING INFRASTRUCTURE         4.2       CREWING         4.3       PASSENGER AND CREW ACCOMMODATIONS         4.4       TYPICAL LOADS                                                                                                                                                                                                                                      | A REQUIREMENTS       6         DESIGN CONSIDERATIONS       6         4.1       BOARDING INFRASTRUCTURE       6         4.2       CREWING       7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •           | 2.4                                                                                                                          | Environmental Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3        |
| <ul> <li>2.4 ENVIRONMENTAL CONDITIONS</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                         | 2.4       ENVIRONMENTAL CONDITIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             | 2.3                                                                                                                          | OPERATIONAL PROFILE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2        |
| 2.3       OPERATIONAL PROFILE         2.4       ENVIRONMENTAL CONDITIONS         3       REQUIREMENTS         4       DESIGN CONSIDERATIONS         4.1       BOARDING INFRASTRUCTURE         4.2       CREWING         4.3       PASSENGER AND CREW ACCOMMODATIONS         4.4       TYPICAL LOADS                                                                                                                                                     | 2.3       OPERATIONAL PROFILE       .2         2.4       ENVIRONMENTAL CONDITIONS       .3         REQUIREMENTS         6         DESIGN CONSIDERATIONS         6       4.1       BOARDING INFRASTRUCTURE       .6         4.2       CREWING       .7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             | 2.2                                                                                                                          | Route                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1        |
| 2.2       ROUTE                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.2       ROUTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             | 2.1                                                                                                                          | Marine Atlantic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1        |
| 2.1       MARINE ATLANTIC                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.1       MARINE ATLANTIC.       1         2.2       ROUTE.       1         2.3       OPERATIONAL PROFILE       2         2.4       ENVIRONMENTAL CONDITIONS.       3         REQUIREMENTS.         6         DESIGN CONSIDERATIONS         6         4.1       BOARDING INFRASTRUCTURE       6         4.2       CREWING.       7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2           | BAC                                                                                                                          | KGROUND INFORMATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1        |
| 2       BACKGROUND INFORMATION         2.1       Marine Atlantic         2.2       ROUTE         2.3       OPERATIONAL PROFILE         2.4       Environmental Conditions         3       REQUIREMENTS         4       DESIGN CONSIDERATIONS         4.1       BOARDING INFRASTRUCTURE         4.2       CREWING         4.3       PASSENGER AND CREW ACCOMMODATIONS         4.4       TYPICAL LOADS                                                    | BACKGROUND INFORMATION       1         2.1       MARINE ATLANTIC       1         2.2       ROUTE       1         2.3       OPERATIONAL PROFILE       2         2.4       ENVIRONMENTAL CONDITIONS       3         REQUIREMENTS         0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0       0         0       0       0       0         0       0       0       0         0       0       0       0         0       0       0       0         0       0       0       0         0       0       0       0         0       0       0       0         0       0       0       0         0       0       0       0         0       0       0       0         0       0       0                                                                                                                                                                                                        | 1           | INTE                                                                                                                         | RODUCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1        |
| 1       INTRODUCTION         2       BACKGROUND INFORMATION         2.1       MARINE ATLANTIC         2.2       ROUTE         2.3       OPERATIONAL PROFILE         2.4       ENVIRONMENTAL CONDITIONS         3       REQUIREMENTS         4       DESIGN CONSIDERATIONS         4.1       BOARDING INFRASTRUCTURE         4.2       CREWING         4.3       PASSENGER AND CREW ACCOMMODATIONS         4.4       TYPICAL LOADS                       | INTRODUCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SI          | JMMAR                                                                                                                        | Υ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | IX       |
| SUMMARY         1       INTRODUCTION         2       BACKGROUND INFORMATION         2.1       MARINE ATLANTIC         2.2       ROUTE         2.3       OPERATIONAL PROFILE         2.4       ENVIRONMENTAL CONDITIONS         3       REQUIREMENTS         4       DESIGN CONSIDERATIONS         4.1       BOARDING INFRASTRUCTURE         4.2       CREWING         4.3       PASSENGER AND CREW ACCOMMODATIONS         4.4       TYPICAL LOADS       | UMMARY IX   INTRODUCTION 1   BACKGROUND INFORMATION 1   2.1 MARINE ATLANTIC   2.1 MARINE ATLANTIC   1 2.2   ROUTE 1   2.3 OPERATIONAL PROFILE   2.4 ENVIRONMENTAL CONDITIONS   3 REQUIREMENTS   6 DESIGN CONSIDERATIONS   6 4.1   BOARDING INFRASTRUCTURE   6 4.2   CREWING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Δ           |                                                                                                                              | IEDGEMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | VIII     |
| ACKNOWLEDGEMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                        | ACKNOWLEDGEMENTS VIII<br>UMMARY IX<br>INTRODUCTION IX<br>BACKGROUND INFORMATION 1<br>2.1 MARINE ATLANTIC 1<br>2.2 ROUTE 1<br>2.3 OPERATIONAL PROFILE 2<br>2.4 ENVIRONMENTAL CONDITIONS 3<br>REQUIREMENTS 6<br>DESIGN CONSIDERATIONS 6<br>4.1 BOARDING INFRASTRUCTURE 6<br>4.2 CREWING 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | ST OF AF                                                                                                                     | BBREVIATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | VII      |
| LIST OF ABBREVIATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                   | IST OF ABBREVIATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - LL        | ST OF TA                                                                                                                     | ABLES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | v        |
| LIST OF TABLES                                                                                                                                                                                                                                                                                                                                                                                                                                          | IST OF TABLES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             | ST OF FI                                                                                                                     | GURES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | V        |
| LIST OF TABLES                                                                                                                                                                                                                                                                                                                                                                                                                                          | IST OF TABLES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |                                                                                                                              | GUBES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | V        |

| ME |  |
|----|--|



| 9  | нι   | JLL FORM                                      |    |
|----|------|-----------------------------------------------|----|
|    | 9.1  | Development                                   |    |
|    | 9.2  | Sectional Areas Curve                         | 23 |
|    | 9.3  | Hydrostatics                                  | 24 |
|    | 9.4  | Lines Plan                                    | 25 |
| 10 | RE   | SISTANCE AND POWERING PREDICTIONS             |    |
|    | 10.1 | Resistance Prediction                         |    |
|    | 10.2 | POWERING PREDICTION                           | 27 |
| 11 | SE   | AKEEPING ANALYSIS                             |    |
|    | 11.1 | Sea State                                     |    |
|    | 11.2 | Criteria                                      |    |
|    | 11.3 | LOCATIONS ASSESSED                            |    |
|    | 11.4 | ZERO SPEED ANALYSIS                           |    |
|    | 11.5 | DESIGN SPEED ANALYSIS                         |    |
|    | 11.6 | Results                                       |    |
| 12 | PC   | DWERING                                       |    |
|    | 12.1 | Electric Load Analysis                        |    |
|    | 12.2 | ENGINE/GENERATOR SELECTION                    |    |
|    | 12.3 | Podded Thruster Selection                     |    |
|    | 12.4 | Bow Thruster Selection                        |    |
|    | 12.5 | FUEL ENDURANCE                                |    |
|    | 12.6 | ENERGY STORAGE SYSTEM                         |    |
| 13 | ST   | ABILITY                                       |    |
|    | 13.1 | Applicable Regulations                        |    |
|    | 13.2 | Floodable Lengths                             |    |
|    | 13.3 | LOADING CONDITIONS                            |    |
|    | 13.4 | INTACT STABILITY                              | 40 |
|    | 13.5 | DAMAGED STABILITY                             | 41 |
| 14 | VE   | EHICLE HANDLING AND VEHICLE DECK REQUIREMENTS |    |
|    | 14.1 | Hazardous Cargo                               |    |
|    | 14.2 | Bow and Stern Doors/Ramps                     | 45 |
|    | 14.3 | Between Deck Ramps                            | 45 |
| 15 | EC   | QUIPMENT SELECTION                            |    |
|    | 15.1 | LIFE-SAVING EQUIPMENT                         | 46 |
| 16 | GE   | ENERAL ARRANGEMENTS                           |    |
|    | 16.1 | Accommodation Deck Arrangements               | 47 |
|    | 16.2 | VEHICLE DECK ARRANGEMENTS                     |    |
|    | 16.3 | MACHINERY ARRANGEMENTS                        |    |
|    | 16.4 | TANK ARRANGEMENTS                             |    |
|    | 16.5 | Main Vertical Fire Zones                      |    |
| 17 | AF   | REA/VOLUMES SUMMARY                           |    |





| 18 SYST  | EMS5                                           | 2 |
|----------|------------------------------------------------|---|
| 18.1     | Firefighting Systems                           | 2 |
| 18.2     | HVAC5                                          | 3 |
| 18.3     | Air Lubrication System                         | 3 |
| 19 SAFE  | TY CONSIDERATIONS                              | 4 |
| 19.1     | Evacuation Plan                                | 4 |
| 19.2     | VEHICLE DECK FLOODING                          | 5 |
| 20 COST  | ۲ ESTIMATE                                     | 6 |
| 20.1     | STRUCTURAL COST                                | 7 |
| 20.2     | OUTFITTING COSTS                               | 8 |
| 20.3     | TOTAL PROCUREMENT COST                         | 8 |
| 20.4     | OPERATING COSTS                                | 8 |
| 21 ENER  | RGY EFFICIENCY DESIGN INDEX                    | 9 |
| 22 RISK  | ASSESSMENT AND RECOMMENDATIONS FOR FUTURE WORK | 1 |
| 22.1     | Sтавіцту                                       | 1 |
| 22.2     | RESISTANCE AND POWERING                        | 1 |
| 22.3     | MANOEUVRABILITY                                | 1 |
| 22.4     | Seakeeping                                     | 2 |
| 22.5     | WEIGHT                                         | 2 |
| 22.6     | ARRANGEMENTS                                   | 2 |
| 22.7     | FUNDING                                        | 2 |
| 23 REFE  | RENCES                                         | 3 |
| APPENDIX | A – STATEMENT OF REQUIREMENTS                  | 1 |
| APPENDIX | B – POLARIS ICE CLASS SELECTIONB-              | 1 |
| APPENDIX | C – STRUCTURAL CALCULATIONSC-                  | 1 |
| APPENDIX | D – MIDSHIP SECTION DRAWINGD-                  | 1 |
| APPENDIX | E – WEIGHT ESTIMATEE-                          | 1 |
| APPENDIX | F – HYDROSTATICS REPORTF-                      | 1 |
| APPENDIX | G – LINES PLANG-                               | 1 |
| APPENDIX | H – RESISTANCE AND PROPULSION REPORTS H-       | 1 |
| APPENDIX | I – INTACT STABILITY OUTPUTSI-                 | 1 |
| APPENDIX | J – DAMAGED STABILITY OUTPUTSJ-                | 1 |
| APPENDIX | K – GENERAL ARRANGEMENTK-                      | 1 |
| APPENDIX | L – MACHINERY ARRANGEMENTSL-                   | 1 |
| APPENDIX | M – CAPACITY PLAN M-                           | 1 |
| APPENDIX | N – AREA/VOLUMES SUMMARY N-                    | 1 |





# LIST OF FIGURES

| Figure 1: Rendering of the Proposed Vessel                             | IX   |
|------------------------------------------------------------------------|------|
| Figure 2: Marine Atlantic Service Routes                               | 2    |
| Figure 3: Operational Profile of Current Marine Atlantic Fleet         | 3    |
| Figure 4: Mean Wave Height in the Cabot Strait                         | 3    |
| Figure 5: Maximum Wave Height in the Cabot Strait                      | 4    |
| Figure 6: Regional Ice Analysis, March 2015                            | 5    |
| Figure 7: Average Vehicle Type Distribution - Port aux Basques Service | 8    |
| Figure 8: Average Vehicle Type Distribution - Argentia Service         | 9    |
| Figure 9: Risk Index Values for each Ice Type                          | . 13 |
| Figure 10: Extent of Ice Strengthening                                 | . 14 |
| Figure 11: Forward View of the Hull                                    | . 22 |
| Figure 12: Aft View of the Hull                                        | . 23 |
| Figure 13: Curve of Areas                                              | . 23 |
| Figure 14: Hydrostatic Curves                                          | . 24 |
| Figure 15: Cross Curves of Stability                                   | . 25 |
| Figure 16: Speed versus Total Resistance Relationship                  | . 27 |
| Figure 17: Speed versus SHP                                            | . 28 |
| Figure 18: Locations of Areas Assessed                                 | . 30 |
| Figure 19: Floodable Lengths Curve                                     | . 38 |
| Figure 20: Locations of Critical Points                                | . 41 |
| Figure 21: Viking Norsafe Maxima - 120MKI                              | . 46 |
| Figure 22: Narwhal FRB-700                                             | . 47 |
| Figure 23: Viking 150DKS                                               | . 47 |
| Figure 24: Visualization of the Tank Arrangement                       | . 51 |
| Figure 25: Top stowing Jalousie flood control door                     | . 56 |
| Figure 26: Structural weight versus cost per tonne                     | . 57 |
| Figure 27: Outfit weight versus cost per tonne                         | . 58 |
| Figure 28: EEDI Formula                                                | . 60 |

# LIST OF TABLES

| Table 1: Principal Particulars                                      | IX |
|---------------------------------------------------------------------|----|
| Table 2: Monthly Mean and Maximum Wave Parameters                   | 4  |
| Table 3: Anticipated Maximum Crew Complement on the Atlantic Puffin | 7  |
| Table 4: Comparison of Relevant Particulars                         | 9  |
| Table 5: Guiding Principal Particulars                              | 10 |
| Table 6: Comparison of Fuel Energy Densities                        | 11 |
| Table 7: Fuel Type Scoring Matrix                                   | 11 |





| Table 8: Risk Index Outcomes and Ice Class Guidelines                             | 13   |
|-----------------------------------------------------------------------------------|------|
| Table 9: Midship Section Modulus (Method 1)                                       | 16   |
| Table 10: Minimum Section Modulus (Method 2)                                      | . 16 |
| Table 11: Calculated Hull Scantlings                                              | 17   |
| Table 12: Vehicle Deck Calculated Scantlings                                      | . 17 |
| Table 13: Ice Strengthening Calculation Results                                   | . 17 |
| Table 14: Midship Section Modulus Results                                         | 18   |
| Table 15: Vessel Component Weights for Weight Margin                              | 18   |
| Table 16: Centres of Gravity                                                      | 19   |
| Table 17: Deadweight Component Estimates                                          | 19   |
| Table 18: Deadweight Components                                                   | 20   |
| Table 19: Summary of weights                                                      | 20   |
| Table 20: Finalized Vessel Particulars                                            | 22   |
| Table 21: Holtrop Parameters                                                      | 26   |
| Table 22: Vessel Total Resistance                                                 | 26   |
| Table 23: Design Propeller Data                                                   | 27   |
| Table 24: Propulsion Prediction Data                                              | . 27 |
| Table 25: Wave parameters                                                         | 29   |
| Table 26: NORDFORSK (1987) Operating Limits for Merchant Vessels                  | 29   |
| Table 27: Zero Speed Seakeeping Analysis Results                                  | 31   |
| Table 28: Design Speed Seakeeping Analysis Results                                | 31   |
| Table 29: Electric Load Analysis                                                  | 33   |
| Table 30: Comparison of Suitable Engines                                          | 34   |
| Table 31: Engine Loads for Port, Manoeuvring, and Service Speed Sailing Scenarios | 34   |
| Table 32: Engine Loads for Maximum Speed Sailing Scenarios                        | 34   |
| Table 33: Required Fuel Capacities when using MDO                                 | 35   |
| Table 34: Required Fuel Capacity when using LNG                                   | 36   |
| Table 35: Emergency Generator Fuel Requirements                                   | 36   |
| Table 36: Required battery capacity estimate                                      | 36   |
| Table 37: Loading Conditions for Stability Analysis                               | 39   |
| Table 38: Intact Stability Result Summary                                         | 40   |
| Table 39: Departure Damage Stability Results                                      | 42   |
| Table 40: Arrival Damage Stability Results                                        | 42   |
| Table 41: Arrival with Ice Damage Stability Results                               | 43   |
| Table 42: Light Operating Damage Stability Results                                | 43   |
| Table 43: Worst Case Operating Damage Stability Results                           | 44   |
| Table 44: Per deck area/volume summary                                            | 52   |
| Table 45: LNG Cost per Trip                                                       | 58   |
| Table 46: Annual Operating Costs                                                  | 59   |
| Table 47: Attainted EEDI Values for LNG and MDO                                   | 60   |





# LIST OF ABBREVIATIONS

| ABS       | American Bureau of Shipping                                         |
|-----------|---------------------------------------------------------------------|
| CFD       | Computational Fluid Dynamics                                        |
| CIS       | Canadian Ice Services                                               |
| СРР       | Controllable Pitch Propeller                                        |
| DNV       | Det Norske Veritas                                                  |
| EPIRP     | Emergency Position Indicating Radio Beacon                          |
| FPP       | Fixed Pitch Propeller                                               |
| GHS       | General Hydrostatics                                                |
| HVAC      | Heating, Ventilation, and Air Conditioning                          |
| IMO       | International Maritime Organization                                 |
| JONSWAP   | Joint North Sea Wave Project                                        |
| LFO       | Liquified Fuel Oil                                                  |
| LNG       | Liquified Natural Gas                                               |
| LM        | Lane Meters                                                         |
| MCR       | Maximum Continuous Rating                                           |
| MDO       | Marine Diesel Oil                                                   |
| MARPOL    | International Convention for the Prevention of Pollution from Ships |
| MSI       | Motion Sickness Incidence                                           |
| MOHS      | Maritime Occupational Health and Safety Regulations                 |
| NATO      | North Atlantic Treaty Organization                                  |
| NL        | Newfoundland and Labrador                                           |
| NORDFORSK | Nordic Co-Operative Organization for Applied Research               |
| NS        | Nova Scotia                                                         |
| PAB       | Port aux Basques                                                    |
| POLARIS   | Polar Operational Limit Assessment Risk Indexing System             |
| RIO       | Risk Index Outcome                                                  |
| RIVs      | Risk Index Values                                                   |
| RoPax     | Roll On Roll Off Passengers                                         |
| SOLAS     | Safety of Life at Sea                                               |
| ТС        | Transport Canada                                                    |
| USCG      | United States Coast Guard                                           |





## ACKNOWLEDGEMENTS

We would like to sincerely thank the following individuals for taking time to support and guide us over the course of the term. Their expertise has been invaluable in the completion of this preliminary design.

- Dr. Brian Veitch Memorial University of Newfoundland, Department of Ocean and Naval Architectural Engineering
- Dr. Doug Smith Memorial University of Newfoundland, Department of Ocean and Naval Architectural Engineering
- Shawn Leamon *Marine Atlantic*
- Stephen Mulrooney *Poseidon Marine Consultants*
- Edward Moakler American Bureau of Shipping
- Dan Oldford American Bureau of Shipping





## SUMMARY

This report documents the preliminary design work completed to develop a 3000-lane meter RoPax ferry for Marine Atlantic. The scope of this concept design includes the following:

- The development of a bespoke hull form
- General arrangements
- Resistance and powering predictions
- Structural calculations and a conceptual midship section
- Intact and damaged stability analyses
- Seakeeping predictions
- Weight estimates, and
- Cost estimates

The principal particulars provided in Table 1 result from multiple iterations of the design.

| Length Overall (m)                   | 204.0    |
|--------------------------------------|----------|
| Waterline Between Perpendiculars (m) | 188.0    |
| Beam (m)                             | 28.0     |
| Draft (m)                            | 6.7      |
| Displacement (t)                     | 24,578.0 |
| Deadweight (t)                       | 4355.0   |
| Service Speed (knots)                | 14.0     |
| Maximum Speed (Knots)                | 20.0     |
| Installed Power (kW)                 | 21,600   |
| Св                                   | 0.63     |
| Vehicle Capacity (lane meters)       | 3263     |
| Passenger Capacity                   | 1000     |
| Crew                                 | 99       |



Figure 1: Rendering of the Proposed Vessel

#### Table 1: Principal Particulars





## **1** INTRODUCTION

The MV Leif Ericson currently serves Marine Atlantic on the Port aux Basques, Newfoundland and Labrador (NL) to North Sydney, Nova Scotia (NS) route as an exclusively commercial vehicle carrier. This vessel has been in operation since 1991 and is approaching the end of her service life. Marine Atlantic is seeking to replace the vessel with a new build that can transport commercial and passenger vehicles on both the North Sydney to Argentia and North Sydney to Port aux Basques routes.

Leif Ericson's replacement creates an opportunity to modernise the Marine Atlantic fleet and increase its passenger and vehicle carrying capacity. With the growing demand for travel to and from the island of Newfoundland, particularly during the summer months, expanding the ferry service is essential to Newfoundland and Labrador's tourism industry.

# **2** BACKGROUND INFORMATION

#### 2.1 MARINE ATLANTIC

Marine Atlantic is a Crown Corporation established in 1986. They currently operate a fleet of four ships – MV Atlantic Vision, MV Blue Puttees, MV Highlanders, and MV Leif Ericson. In 2019 (prior to the COVID-19 pandemic), Marine Atlantic's ferries carried a combined 311,499 passengers, 120,426 passenger vehicles, and 82,194 commercial vehicles across 1632 total sailings [1].

## 2.2 ROUTE

Marine Atlantic ferries operate on two routes – North Sydney to Port aux Basques and North Sydney to Argentia.

#### 2.2.1 North Sydney to Port aux Basques

The North Sydney to Port aux Basques route is a 96 nautical mile (nm) daily ferry service. A typical crossing takes 7 hours to complete at an average speed of 14 knots. The ferry will depart from the Port aux Basques or North Sydney terminal at 11:45 and arrive at the opposite terminal at 18:45. The evening ferry will depart at 23:15 and arrive at the opposite terminal at 07:30. There is a four-hour turnaround period between each sailing to embark/disembark all passengers and vehicles, take on new provisions, refuel if necessary, and clean the passenger accommodations.

#### 2.2.2 North Sydney to Argentia

The North Sydney to Argentia route is a 280nm service. It is only offered between mid-June and late-September to accommodate tourists travelling to St. John's, NL. This is a much longer route





compared to the North Sydney to Port Aux Basques crossing and usually takes 16.5 hours to complete at an average speed of 17 knots. The ferry will depart from the North Sydney or Argentia terminal at 17:00 and arrive at the opposite terminal at 09:00 the following morning. There is an eight-hour turnaround period between each crossing.



Figure 2 below shows the ferry routes and corresponding distances.

Figure 2: Marine Atlantic Service Routes [1]

#### 2.3 **OPERATIONAL PROFILE**

The typical operating profile of a Marine Atlantic ferry is shown in Figure 3. Most of the ferry's time is spent in transit between North Sydney and Port aux Basques. In 2022, this route was crossed 1727 times [2]. A third of the ferry's time is spent in port loading and unloading vehicles. The Argentia crossing represents only 15% of the ferry's operating profile. This is because the Argentia service is only provided between June and September. In 2022, only 76 Argentia crossings were completed [2]. The remaining time is considered downtime. This includes pauses in operation for maintenance or crossings cancelled due to poor weather.



Figure 3: Operational Profile of Current Marine Atlantic Fleet

#### 2.4 ENVIRONMENTAL CONDITIONS

#### 2.4.1 Waves

Conditions can be very rough in the Cabot Strait, particularly in winter (November through March), when the mean wave heights are between 1.9m and 2.7m (Figure 4). Maximum wave heights in the strait that exceed 10m are also recorded numerous times each year (Figure 5). From May to August, the sea-state is calmer, with average significant wave heights between 1.4m and 2.0m [3].



Figure 4: Mean Wave Height in the Cabot Strait [3]







Figure 5: Maximum Wave Height in the Cabot Strait [3]

Table 2 below summarises the sea states for each month of the year based on the past 40 years of collected weather data.

| Month     | MEAN<br>HSIG (M) | MEAN<br>TP (S) | MAX.<br>HSIG (M) | TP OF MAX.<br>HSIG (S) | MAX TP<br>(S) |
|-----------|------------------|----------------|------------------|------------------------|---------------|
| January   | 2.7              | 8.4            | 9.8              | 12.2                   | 15.6          |
| February  | 2.4              | 8.1            | 10.3             | 14.1                   | 14.7          |
| March     | 1.9              | 7.1            | 9.0              | 11.9                   | 16.1          |
| April     | 1.8              | 7.6            | 6.6              | 11.8                   | 16.0          |
| May       | 1.5              | 7.5            | 5.8              | 9.8                    | 19.3          |
| June      | 1.4              | 7.4            | 4.8              | 10.4                   | 16.1          |
| July      | 1.4              | 7.4            | 4.8              | 10.1                   | 17.5          |
| August    | 1.4              | 7.3            | 7.3              | 13.0                   | 16.2          |
| September | 1.7              | 7.7            | 9.5              | 12.8                   | 18.5          |
| October   | 2.0              | 7.5            | 9.0              | 12.7                   | 17.7          |
| November  | 2.4              | 7.9            | 9.0              | 14.1                   | 14.5          |
| December  | 2.7              | 8.4            | 10.0             | 13.0                   | 15.6          |
| Average   | 1.9              | 7.7            | 10.3             | 14.1                   | 19.3          |

Table 2: Monthly Mean and Maximum Wave Parameters [3]

#### 2.4.2 Ice

Ice patches often build up around Cape Breton between January and May each year. Figure 6 shows a particularly large ice pack around Cape Breton in March 2015. The ice that accumulates



typically consists of new ice or winter ice. Ice concentrations vary, but it is common for patches to be large, highly concentrated (9+), and consist primarily of first-year ice [4].



Figure 6: Regional Ice Analysis, March 2015 [4]

#### 2.4.3 Vessel Icing

Moderate or worse icing is expected 15% - 20% of the time in January and February. Conditions improve in March, with moderate or worse icing expected 5% - 10% of the time. Icing conditions in December are similar to those expected in March [3].

#### 2.4.4 Wind

Winds often reach gale forces in the Cabot Strait. High winds are one of the most common causes of delays to the ferry service. Additionally, Port aux Basques has a reputation for being a particularly difficult port to navigate due to the frequency of high winds experienced in the area. Marine Atlantic has retrofitted two of its ships with an additional bow thruster to improve manoeuvrability in high winds.





# **3 REQUIREMENTS**

The requirements for the vessel are summarised below. A detailed list of requirements can be found in the owner's requirements provided in Appendix A.

The vessel will operate year-round between Nova Scotia and Newfoundland and must integrate seamlessly with the existing boarding infrastructure at the three Marine Atlantic terminals. It must also maintain the current timetable and be capable of operating in ice conditions common around Cape Breton.

Key requirements for the vessel include accommodations for 1000 passengers, 100 crew, and 3000 lane meters of vehicle capacity. It must also be in service for 40 years, which has a significant impact on the structural arrangements, accommodations, and propulsion system.

The vessel will be classed with Det Norske Veritas (DNV), as with all of Marine Atlantic's ferries. It must therefore be designed following the relevant DNV rules and regulations for classification. It must also comply with the following rules and codes as they pertain to RoPax vessels:

- International Maritime Organization (IMO)
- Transport Canada (TC)
- International Convention for the Safety of Life at Sea (SOLAS)
- International Load Line Convention (LLC)
- International Convention for the Prevention of Pollution from Ships (MARPOL)
- International Maritime Dangerous Goods (IMDG) Code
- Canadian Transportation Agency's Ferry Accessibility for Persons with Disability Code of Practice

## **4 Design Considerations**

#### 4.1 BOARDING INFRASTRUCTURE

#### 4.1.1 North Sydney

The North Sydney terminal allows two-level vehicle loading/unloading via two ramps. It has facilities which allow the current fleet of ferries to connect to shore power during turnaround periods.

#### 4.1.2 Port aux Basques

Port aux Basques also allows for two levels of vehicle loading/unloading and allows ferries to connect to shore power.





#### 4.1.3 Argentia

The Argentia terminal is much smaller in comparison to the North Sydney and Port aux Basques terminals. It only has single ramp loading and does not have the infrastructure in place which would allow vessels to connect to shore power. However, this capability is expected to be added in the future.

#### 4.2 CREWING

The crewing arrangements on Marine Atlantic ferries typically consist of between 70 to 90 crew members [2]. Most of the crew are part of the passenger services department, and as a result, the crew size varies based on the route. There will be more service staff onboard for the Argentia route since over 90% of passengers are tourists, whereas just under 60% of passengers are tourists on the Port aux Basques route [2]. The new ferry must have significantly more cabins than any of the ships in the current fleet. This requires an increase in the number of service staff to ensure all the cabins can be cleaned for new passengers within the four-hour turnaround period. The number of crew is also subject to Transport Canada Marine Personnel regulations [6]. Table 3 provides a summary of the maximum crew complement.

| Position       | Number |
|----------------|--------|
| Master         | 1      |
| Deck Officers  | 6      |
| Chief Engineer | 1      |
| Engineers      | 6      |
| Crew           | 25     |
| Service Staff  | 60     |
| Total          | 99     |

Table 3: Anticipated Maximum Crew Complement on the Atlantic Puffin

#### 4.3 PASSENGER AND CREW ACCOMMODATIONS

Passenger accommodations should be located as far away as possible from the engines and other mechanical equipment to minimize disruption due to vibration and noise. The vessel will be expected to obtain COMF (V-1, C-1) notation from DNV. There will be various cabin grades, including suites, window cabins, inside cabins, as well as fully accessible cabins.

There must be a private head in each cabin which includes a small shower, toilet, and sink. Most cabins may be two berths with an additional two berths that are lowered from the deck head.

Marine Atlantic crew work a monthly tour pattern which consists of 15 days working on the ship and 15 days of leave. As a result, crew accommodations are required. Each crew cabin will





have its own head and shower, a desk, and a chair, as recommended by the Canadian Maritime Occupational Health and Safety (MOHS) regulations [6].

There will also be pet-friendly accommodations which will allow passengers to bring their pets into the cabin rather than leaving them in vehicles or kennel facilities. These designated cabins will represent 10% of all cabins and will include alternative deck covering to carpeting so they can be easily cleaned.

#### 4.4 TYPICAL LOADS

The following loading estimates (Figure 7) are based on traffic data provided by Marine Atlantic for the 2022 season [2]. The average vehicle distribution on the Port aux Basques service in 2022 consisted primarily of passenger vehicles (57%) and a nearly equal split between drop units (trailers not connected to a truck) and live units (connected truck and trailer).



Figure 7: Average Vehicle Type Distribution - Port aux Basques Service

A similar distribution was created for the Argentia service (Figure 8). This crossing caters towards tourists headed for St. John's, which is reflected in most vehicles being passenger cars. Only 3% of a typical load consists of commercial traffic.







## 2022 Average Vehicle Type Distribution - Argentia Service

Figure 8: Average Vehicle Type Distribution - Argentia Service

#### 4.5 PARAMETRIC STUDY

A parametric study was completed to help determine the guiding particulars of the vessel. Some key aspects of the comparison are provided in Table 4.

| Vessel                       | Length<br>(m) | Beam<br>(m) | Draft<br>(m) | Passenger<br>Capacity | Vehicle<br>Capacity<br>(Lane<br>Meters) | Service<br>Speed<br>(kn) | Installed<br>Power<br>(kW) | GRT    |
|------------------------------|---------------|-------------|--------------|-----------------------|-----------------------------------------|--------------------------|----------------------------|--------|
| Atlantic Vision              | 203           | 25          | 6.7          | 700                   | 2425                                    | 25.5                     | 40,080                     | 30,285 |
| Blue Puttees/<br>Highlanders | 200           | 26.7        | 6.2          | 1000                  | 2840                                    | 18                       | 21,600                     | 28,460 |
| Stena Edda                   | 215           | 27.8        | 6.4          | 1000                  | 2723                                    | 22                       | 25,200                     | 42,400 |
| Rusadir                      | 187.4         | 31          | 6.6          | 1680                  | 2600                                    | 22                       | -                          | 42,000 |
| Gotland                      | 200           | 32          | 6.4          | 1500                  | 1600                                    | 28.5                     | 50,400                     | 29,746 |
| Megastar                     | 212           | 30.6        | 6.7          | 2800                  | 3653                                    | 27                       | 40,600                     | 49,134 |

Using the parametric study and the physical design constraints provided by Marine Atlantic [2], the preliminary principal particulars, shown in Table 5, were determined.





| Length Overall (m)   | 204    |
|----------------------|--------|
| Beam (m)             | 28     |
| Draft (m)            | 6.7    |
| Displacement (t)     | 25,000 |
| Deadweight (t)       | 4500   |
| Service Speed (kn)   | 14     |
| Maximum Speed (kn)   | 20     |
| Installed Power (kW) | 24,000 |
| Block Coefficient    | 0.60   |

## **5 PROPULSION OPTION ANALYSIS**

#### 5.1 FUEL TYPE

Given the vessel's expected 40-year service life, it is necessary to consider alternative fuel sources to ensure it will comply with increasingly strict emissions regulations. Five factors were considered in selecting a suitable alternative fuel source for the vessel:

- 1. Emissions Environmental impact and compliance with future regulations
- 2. Availability Ease of obtaining fuel and existence of necessary infrastructure in North Sydney
- 3. Fuel Cost Cost of obtaining the fuel
- 4. Build Cost Impact on capital expenses due to additional machinery and complexity
- 5. Volumetric Energy Density Space required to store the fuel

After a review of vessels that have been designed to operate on alternatives to diesel, the following six energy sources were identified as potential fuels for the vessel:

- Liquified Natural Gas (LNG)
- Ammonia
- Methanol
- Hydrogen
- Dual Fuel (LNG and MDO)
- Hybrid

A comparison of energy densities for each of the fuel types considered is provided in Table 6.





| Table 6: Comparison | of Fuel Energy | Densities [ | 7] |
|---------------------|----------------|-------------|----|
|---------------------|----------------|-------------|----|

| Fuel Type         | Energy Density<br>(kWh/kg) | Volumetric Energy<br>Density kWh/L) | Density (kg/m <sup>3</sup> ) |  |
|-------------------|----------------------------|-------------------------------------|------------------------------|--|
| MDO (Baseline)    | 11.9                       | 9.97                                | 838                          |  |
| LNG               | 13.5                       | 5.93                                | 440                          |  |
| Ammonia           | 5.2                        | 3.53                                | 682                          |  |
| Methanol          | 5.5                        | 4.44                                | 1232                         |  |
| Hydrogen (Liquid) | 33.3                       | 2.36                                | 71                           |  |

A scoring matrix was then used to assess the suitability of each fuel type, as shown in Table 7:

|                |        | Dual<br>Fuel | LNG          | Ammonia      | Methanol     | Hydrogen     | Hybrid       |
|----------------|--------|--------------|--------------|--------------|--------------|--------------|--------------|
| <u>Factor</u>  | Weight | <u>Score</u> | <u>Score</u> | <u>Score</u> | <u>Score</u> | <u>Score</u> | <u>Score</u> |
| Emissions      | 15%    | 2            | 4            | 3            | 3            | 5            | 3            |
| Availability   | 30%    | 5            | 2            | 2            | 1            | 1            | 5            |
| Fuel Cost      | 25%    | 4            | 4            | 2            | 2            | 3            | 5            |
| Build Costs    | 20%    | 3            | 3            | 3            | 4            | 2            | 2            |
| Volume         | 10%    | 2            | 3            | 2            | 2            | 1            | 1            |
| Weighted Score |        | 3.6          | 3.1          | 2.35         | 2.25         | 2.3          | 3.7          |

Table 7: Fuel Type Scoring Matrix

Based on the scores obtained from the scoring matrix and considerations given to the vessel's long service life, a dual fuel (LNG-MDO)-battery hybrid system will be used. Using pure LNG would have been preferable; however, North Sydney currently has no bunkering facilities. There are plans to add LNG bunkering infrastructure in the future, so the vessel will be LNG fuel ready for when LNG becomes available.

The vessel will also incorporate batteries into the propulsion system. These will primarily be used when the vessel is manoeuvring into and out of the Marine Atlantic terminals to reduce the vessels' emissions and noise when near the port communities.

The proposed arrangement would be more expensive than a pure MDO system. However, it is likely that if such an arrangement is not installed when the vessel is initially built, it would need to be retrofitted later in its career to meet emissions regulations at considerable expense.

#### 5.2 MACHINERY CONFIGURATION

Five machinery configurations that are typical for passenger ferries were considered:

1. Dual Fuel-Electric with Pods





- 2. Dual Fuel-Electric with Fixed Pitch Propeller (FPP)
- 3. Dual Fuel-Electric with Controllable Pitch Propeller (CPP)
- 4. Medium Speed Dual Fuel with FPP
- 5. Medium Speed Dual Fuel with CPP

Most of the ferries included in the parametric study were designed with a twin-screw dieselelectric arrangement. This arrangement provides a high level of flexibility in the placement of the main engines and is very reliable. Medium-speed diesels are also common among RoPax ferries. They are reliable, compact, and relatively low-cost. However, due to the frequently changing electrical demands of the vessel and the simplicity of incorporating a battery hybrid system, a diesel-electric arrangement was selected.

Podded propulsors offer greater manoeuvrability compared to CPP or FPP and reduced vibrations [7]. Both are significant advantages, particularly for this application where passenger comfort is crucial and manoeuvring in Port aux Basques is notoriously difficult. Pods also can reduce fuel consumption, which would help the vessel achieve its emission targets.

Pods are more expensive than a CPP or FPP arrangement and require the vessel to have a specific stern shape. They are also not ideal for vessels with a relatively shallow draft.

Ultimately, pods were chosen due to the considerable benefit they provide to the vessel's manoeuvrability and passenger comfort. This result aligns with a study commissioned by Marine Atlantic in 2008 to develop a notional 200m ferry concept [8]. In that study, pods were recommended, although Marine Atlantic was not in favour of a podded arrangement at the time as pods were still relatively new and there were reliability concerns. They have since become more reliable and popular, particularly on passenger ships.

# 6 ICE CLASS

#### 6.1 ICE CLASS SELECTION

The ferry will be operating in an area where ice builds up during the winter months. It, therefore, requires some level of ice-strengthening or icebreaking capability. The Polaris Code was used in combination with archived ice data from the Canadian Ice Services (CIS) [4] to determine the required ice-breaking class.

This method involves identifying the worst ice conditions likely to be experienced in the area of operation and using Risk Index Values (RIVs) corresponding to the desired ice class to then calculate the Risk Index Outcome (RIO). The resulting RIO can be evaluated to determine the operational risk associated with sailing the vessel through the worst expected ice conditions.





The equation shown below is used to calculate the RIO. The variable  $C_i$  represents the concentration of ice types within an ice regime, and  $V_i$  is the value corresponding to  $C_i$  obtained from Figure 9.

|              | RISK INDEX VALUES (RIVs) for each Ice Type |         |          |            |            |            |            |            |             |        |            |            |
|--------------|--------------------------------------------|---------|----------|------------|------------|------------|------------|------------|-------------|--------|------------|------------|
|              | ICE FREE                                   | NEW ICE | GREY ICE | GREY WHITE | THIN FIRST | THIN FIRST | MEDIUM     | MEDIUM     | THICK FIRST | SECOND | MULTI YEAR | HEAVY      |
|              |                                            |         |          | ICE        | YEAR 1ST   | YEAR 2ND   | FIRST YEAR | FIRST YEAR | YEAR        | YEAR   |            | MULTI YEAR |
|              |                                            |         |          |            | STAGE      | STAGE      |            | 2ND STAGE  |             |        |            |            |
| PC 1         | 3                                          | 3       | 3        | 3          | 2          | 2          | 2          | 2          | 2           | 2      | 1          | 1          |
| PC 2         | 3                                          | 3       | 3        | 3          | 2          | 2          | 2          | 2          | 2           | 1      | 1          | 0          |
| PC 3         | 3                                          | 3       | 3        | 3          | 2          | 2          | 2          | 2          | 2           | 1      | 0          | -1         |
| PC 4         | 3                                          | 3       | 3        | 3          | 2          | 2          | 2          | 2          | 1           | 0      | -1         | -2         |
| PC 5         | 3                                          | 3       | 3        | 3          | 2          | 2          | 1          | 1          | 0           | -1     | -2         | -2         |
| PC 6         | 3                                          | 2       | 2        | 2          | 2          | 1          | 1          | 0          | -1          | -2     | -3         | -3         |
| PC 7         | 3                                          | 2       | 2        | 2          | 1          | 1          | 0          | -1         | -2          | -3     | -3         | -3         |
| IAS          | 3                                          | 2       | 2        | 2          | 2          | 1          | 0          | -1         | -2          | -3     | -4         | -4         |
| IA           | 3                                          | 2       | 2        | 2          | 1          | 0          | -1         | -2         | -3          | -4     | -5         | -5         |
| IB           | 3                                          | 2       | 2        | 1          | 0          | -1         | -2         | -3         | -4          | -5     | -6         | -6         |
| IC           | 3                                          | 2       | 1        | 0          | -1         | -2         | -3         | -4         | -5          | -6     | -7         |            |
| No Ice Class | 3                                          | 1       | 0        | -1         | -2         | -3         | -4         | -5         | -6          | -7     | -8         |            |



To operate safely in the worst ice conditions expected, the ferry must attain an RIO greater than zero, as shown in Table 8.

| RIO <sub>Ship</sub> | Ice Classes PC1-PC7                           | Ice Classes below PC7 and ships not<br>assigned an ice class |
|---------------------|-----------------------------------------------|--------------------------------------------------------------|
| RIO ≥ 0             | Normal Operation                              | Normal Operation                                             |
| -10 ≤ RIO < 0       | Elevated operational risk                     | Operation subject to special<br>consideration                |
| RIO < -10           | Operation subject to<br>special consideration | Operation subject to special<br>consideration                |
|                     |                                               |                                                              |

Table 8: Risk Index Outcomes and Ice Class Guidelines [10]

To determine a suitable ice class for the ferry, ice condition data along the route was collected from 2015 to 2022. This data was then used to calculate the RIOs for a Finnish-Swedish 1AS, 1A, 1B, and 1C class vessel. It was then possible to determine the number of instances when the vessel would operate at an elevated risk or was subject to special consideration. This data can be found in Appendix B.

These results showed that there were no instances where a 1AS vessel would be at an elevated operational risk. For a 1A class vessel, only once between 2015 and 2022 would the vessel be at an elevated operational risk. A 1B vessel was subject to special consideration 22 times, and a 1C vessel was subject to special consideration 53 times.

Figure 9: Risk Index Values for each Ice Type [10]





The costs associated with building a ship to meet an ice class can be quite high. It is, therefore, acceptable for the ferry to occasionally operate subject to special considerations if a lower ice class is feasible. It, therefore, does not need to be 1AS; however, the 22 instances where a 1B vessel would be at an elevated risk is too frequent of an occurrence. The ferry will consequently comply with Baltic 1A ice class rules.

#### 6.2 FINNISH-SWDISH 1A REQUIREMENTS

Finnish-Swedish 1A ice class falls into Category C of the polar ship categories. Ships within this category are designed to navigate difficult ice conditions with the assistance of an icebreaker when necessary. Finnish-Swedish 1A class vessels must be able to achieve a speed of at least five knots in brash ice measuring 1.0m thick [11].

#### 6.2.1 Strengthened Regions

Per DNV-RU-SHIP Pt. 6 Chapter 6 Cold Climate [11], for the purposes of ice strengthening, the vessel is divided into three regions – bow, midbody, and stern (Figure 10). The bow region extends from the stem to a line drawn parallel to, and aft of the forward borderline of the area of the hull where the waterlines are parallel to the centerline. The midbody region begins where the bow region ends and stretches to a line drawn parallel to, and aft of the area of the hull where the waterlines run parallel to the centerline. The stern region is then simply the region which begins immediately aft of the midbody region and extends to the stern of the vessel [12].

The shell plating within the ice belt is required to extend 0.5m above the Upper Ice Waterline (UIWL) in all regions, and 0.9m below the Lower Ice Waterline (LIWL) in the bow region, and 0.75 in the midbody and stern regions [12].

Transverse and longitudinal frames must also be strengthened in the ice belt. At the bow, the strengthening for frames extends 1.0m above the UIWL for all regions, 1.6m below the LIWL in the stern region, 1.6m in the bow region, 1.3m in the midship region, and 1.0m in the stern region.



Figure 10: Extent of Ice Strengthening [12]





# **7 S**TRUCTURE

#### 7.1 APPLICABLE REGULATIONS

The vessel must comply with all applicable regulations from DNV-RU-SHIP Pt. 2 Materials and Welding [13], DNV-RU-SHIP Pt. 3 Hull [14], DNV-RU-SHIP Pt. 5 Chapter 3 RO/RO Ships [15], DNV-RU-SHIP Pt 5 Chapter 4 Passenger Ships [16], and DNV-RU-SHIP Pt. 6 Chapter 6 Cold Climate [12].

## 7.2 FRAMING SYSTEM

Long ships will typically utilize either a longitudinal or mixed framing system. Longitudinal framing is more efficient as less material is required to resist the large bending loads on the hull, allowing for a higher deadweight capacity. However, a pure longitudinal arrangement requires deep web frames, which would intrude on the vehicle decks. The nature of ro-ro ferries necessitates having large unobstructed decks for faster vehicle loading and higher vehicle capacities. The vessel will therefore use a mixed framing system to maximize the available vehicle deck space and minimize structural weight.

## 7.3 MATERIAL

According to DNV-RU-SHIP Pt.3 Chapter 3: Hull [17], ice-strengthened ships must use a minimum steel grade of either B or AH for shell strakes in ice-strengthened areas for plates.

In non-ice-strengthened areas, primary structural members must be Class II within 0.4L amidships and grade A/AH steel outside of 0.4L amidships. Secondary structural members in non-ice-strengthened areas must be Class I within 0.4L amidships and grade A/AH steel outside of 0.4L amidships.

These requirements, along with discussions with representatives from the American Bureau of Shipping (ABS), who are familiar with ice conditions in the area of operation, ultimately led to the decision to use AH36 steel for most of the vessel's structure.

## 7.4 MIDSHIP SECTION MODULUS

The minimum midship section modulus was estimated using the two methods described in DNV-RU-SHIP Pt 3 Section 1.3 and 1.4 [17]. The first method (Table 9) is based on the vessel's hull parameters and material. The second method (Table 10) is based on estimated still water and wave induced bending moments in hogging and sagging conditions. The larger value produced by the two estimates was taken as the minimum required section modulus.



| Parameter                                 |            | Value |
|-------------------------------------------|------------|-------|
| Rule Length (m)                           | L          | 188   |
| Beam (m)                                  | В          | 28    |
| Block Coefficient                         | CB         | 0.63  |
| Material Factor                           | k          | 0.72  |
| Reduction Factor                          | $f_{r}$    | 1     |
| Wave Parameter                            | Cwo        | 9.56  |
| Minimum Section Modulus (m <sup>3</sup> ) | $Z_{R-gr}$ | 9.06  |

#### Table 9: Midship Section Modulus (Method 1)

Table 10: Minimum Section Modulus (Method 2)

| Parameter                                                                                 |                 | Value      |
|-------------------------------------------------------------------------------------------|-----------------|------------|
| Vertical wave bending moment for strength assessment amidships in hogging condition (kNm) | $M_{wv-h-mid}$  | 1133024.7  |
| Vertical wave bending moment for strength assessment amidships in sagging condition (kNm) | $M_{wv-s-mid}$  | -1384694.7 |
| Bending moment in hogging Condition (kNm)                                                 | $M_{sw-h-min}$  | 1019722.3  |
| Bending moment in sagging Condition (kNm)                                                 | $M_{sw-s-min}$  | -652844.4  |
| Permissible hull girder bending stress (N/mm <sup>2</sup> )                               | $\sigma_{perm}$ | 243.1      |
| Minimum section modulus, hogging (m <sup>3</sup> )                                        | $Z_{GR-h}$      | 8.86       |
| Minimum section modulus, sagging (m <sup>3</sup> )                                        | $Z_{GR-s}$      | 8.38       |

#### 7.5 HULL SCANTLINGS

Estimates for the hull scantlings were obtained from DNV-RU-SHIP Pt 3 Chapter 3: Structural Design Principles [17] and DNV-RU-SHIP Pt 3 Chapter 6: Local Hull Scantling [18]. The Net Scantling Approach was taken to determine the gross thickness, considering anticipated corrosion over the forty-year life of the vessel. All values were rounded up for conservatism. Detailed calculations and a complete list of scantlings are included in Appendix C, and a summary of obtained values are shown in Table 11 below.



| Table 11: | Calculated Hull Scan | tlings |
|-----------|----------------------|--------|
|-----------|----------------------|--------|

| Bottom Plating Thickness (mm)      | 15.0 |
|------------------------------------|------|
| Bilge Strake Thickness (mm)        | 13.0 |
| Centerline Girder Thickness (mm)   | 13.0 |
| Side Shell Thickness (mm)          | 12.0 |
| Bottom Longitudinal Thickness (mm) | 11.0 |
| Weather Deck Plate Thickness (mm)  | 10.0 |

#### 7.6 VEHICLE DECK SCANTLINGS

The required thickness of the vehicle deck plating was estimated from DNV-RU-SHIP Pt 3 Chapter 10: Special Requirements [19]. The process of calculating the minimum plate thickness involves estimating vertical accelerations and tire patch areas to determine a design pressure while at sea. The vehicle load and tire patch area values were based on a fully loaded tractor-semitrailer. Full calculations are included in Appendix C, and a summarized list is shown in Table 12.

Table 12: Vehicle Deck Calculated Scantlings

| Minimum Required Thickness (mm) | 11.4 |
|---------------------------------|------|
| Design Thickness (mm)           | 14.0 |

#### 7.7 ICE STRENGTHENING

The plating at the ice belt is required to be thicker than the plating in other areas to withstand impacts with ice. The thickness of the plating in ice-strengthened areas was determined based on a procedure outlined in DNV-RU-SHIP Pt. 6 Chapter 6: Cold Climates [12]. The minimum thickness includes a 2mm addition as required by DNV to account for abrasion and corrosion. The final value was further increased to 30.0 mm for added conservatism and to account for the particularly long service life of the vessel. The full calculations are provided in Appendix C, and the resultant ice-strengthening values at the midship section are shown in Table 13.

| R <sub>eH</sub> (MPa) | 355  |
|-----------------------|------|
| Minimum t (mm)        | 26.4 |
| Design t (mm)         | 30.0 |

#### 7.8 MIDSHIP SECTION

The midship section drawing provided in Appendix D shows the preliminary structural arrangements of both ordinary and web frames. The scantlings specified in the drawing reflect the estimates above, but further structure optimisation should be performed to reduce structural weight.





The section modulus realized in the midship section drawing exceeds the minimum required by DNV. This ensures that the vessel will be able to operate for 40 years without serious concerns related to fatigue. The midship section modulus results are provided in Table 14 below.

| Table 14: Midship Section | Modulus Results |
|---------------------------|-----------------|
|---------------------------|-----------------|

| Required Section Modulus (m <sup>3</sup> )       | 9.06 |
|--------------------------------------------------|------|
| Designed Section Modulus, Deck(m <sup>3</sup> )  | 13.1 |
| Designed Section Modulus, Keel (m <sup>3</sup> ) | 17.7 |

Appendix C contains detailed structural calculations and the scantlings for various structural elements.

# 8 WEIGHT ESTIMATE

#### 8.1 LIGHTSHIP WEIGHTS AND CENTRES ESTIMATE

The preliminary lightship weights and centres estimates were produced using a series of parametric equations provided in Chapter 11 of SNAME's *Ship Design and Construction Volume* 1 [20]. The method separates the total lightship weight into four weight groups:

- Structural Weight (W<sub>s</sub>)
- Machinery Weight (W<sub>M</sub>)
- Outfit Weight (W<sub>0</sub>)
- Weight Margin (W<sub>Margin</sub>)

The four groups can then be summed to estimate the lightship weight. The complete calculation is provided in Appendix E.

The total lightship weight is provided in Table 15. Watson and Gilfillan recommend applying a 3% margin to the weight estimate derived from the equations they developed [20]. Due to the added complexity of LNG and podded propulsors, a more conservative 5% margin was used.

| Component | Weight<br>(Tonnes) |
|-----------|--------------------|
| Structure | 10160              |
| Machinery | 1731               |
| Outfit    | 7370               |
| Total     | 19260              |
| 5% Margin | 20223              |
| 5% Margin | 20223              |

Table 15: Vessel Component Weights for Weight Margin





The centres were also estimated using formulas provided in Ship Design and Construction Volume 1 [20]. The centres are divided into three groups – structure, outfit, and machinery. Table 16 summarizes the centres for each group.

| Group          | LCG (m) | TCG (m) | VCG (m) |
|----------------|---------|---------|---------|
| Hull           | 96.9    | 0       | 8.4     |
| Superstructure | 94.5    | 0       | 26.0    |
| Deckhouse      | 113.0   | 0       | 33.0    |
| Outfit         | 91.3    | 0       | 18.9    |
| Machinery      | 54.5    | 0       | 4.1     |
| Net            | 91.1    | 0       | 13.34   |

| Table    | 16: | Centres | of | Gravit |
|----------|-----|---------|----|--------|
| , and ic | ±0. | centres | ~, | 0      |

#### 8.2 DEADWEIGHT ESTIMATE

The following elements (Table 17) of the deadweight estimate were obtained from SNAME's Ship Design and Construction Volume 1 [20].

|--|

| Component              | Weight (tonnes) |
|------------------------|-----------------|
| Freshwater             | 0.17/person     |
| Crew and Effects       | 0.17/person     |
| Passengers and Effects | 0.17/person     |
| Provisions             | 0.01/person/day |

The weight of a passenger vehicle was based on an automotive trends study conducted by the U.S. Environmental Protection Agency [21]. The study reported an average vehicle curb weight (weight of the vehicle plus consumables such as fuel and brake fluid) of 1885kg [22]. The study also indicated that average vehicle weight is expected to grow as electric vehicles, which typically weigh more than their fuel counterparts, become increasingly popular [22]. To account for this growth, an average passenger vehicle weight of 2000kg was assumed.

The weight of live and drop units was based on the truck weight limits defined in Newfoundland and Labrador Regulation 105/14 Vehicle Regulations [23] and the equivalent regulations for Nova Scotia [24]. These limits correspond to the number of axles on the truck and trailer, as well as their tire spread. For example, in Nova Scotia, a five-axle tractor semitrailer with a 3.6m - 3.7m spread (referring to the longitudinal distance between the centres of extreme axles in an axle group) cannot exceed 32,600kg in gross weight [24]. A conservative 35,000kg was therefore assumed to be the average weight of a live unit, and 25,000kg was assumed to be the average weight of a live unit, and 25,000kg was assumed to be the average weight of a live unit. A summary of the deadweight components is shown below in Table 18.



| Component              | Weight<br>(Tonnes) |
|------------------------|--------------------|
| Lube Oil               | 42                 |
| Fuel (LNG)             | 389                |
| Freshwater             | 384                |
| Crew and Effects       | 16                 |
| Passengers and Effects | 170                |
| Provisions             | 22                 |
| Passenger Vehicles     | 400                |
| Live Units             | 1575               |
| Drop Units             | 875                |
| Total                  | 3872               |

Table 18: Deadweight Components

## 8.3 WEIGHT ESTIMATE SUMMARY

A summary of the vessel's weight for each loading condition is provided in Table 19.

| Table 19: Summary o | of weights |
|---------------------|------------|
|---------------------|------------|

|                                                                           | Loading Condition               |                                        |                                    |                                        |                                 |
|---------------------------------------------------------------------------|---------------------------------|----------------------------------------|------------------------------------|----------------------------------------|---------------------------------|
| Component                                                                 | Lightship                       | Full Load -<br>Departure               | Full Load<br>- Arrival             | Light<br>Operating<br>Condition        | Worst<br>Operating<br>Condition |
| Lightship                                                                 | 20223.0                         | 20223.0                                | 20223.0                            | 20223.0                                | 20223.0                         |
| <b>Fuel</b><br>LNG<br>LNG<br>Emergency Gen Diesel<br>Day Tank<br>Day Tank | 0.0<br>0.0<br>0.0<br>0.0<br>0.0 | 208.4<br>208.4<br>59.5<br>79.4<br>79.4 | 21.3<br>21.3<br>59.5<br>8.1<br>8.1 | 208.4<br>208.4<br>59.5<br>79.4<br>79.4 | 4.3<br>4.3<br>1.2<br>1.6<br>1.6 |
| Water                                                                     |                                 |                                        |                                    |                                        |                                 |
| Technical Water                                                           | 0.0                             | 76.0                                   | 7.8                                | 76.0                                   | 1.6                             |
| Freshwater                                                                | 0.0                             | 188.2                                  | 19.2                               | 188.2                                  | 3.8                             |
| Freshwater                                                                | 0.0                             | 188.2                                  | 19.2                               | 188.2                                  | 3.8                             |
| Black Water                                                               | 0.0                             | 20.9                                   | 204.9                              | 20.9                                   | 4.2                             |
| Grey Water                                                                | 0.0                             | 20.9                                   | 204.9                              | 20.9                                   | 4.2                             |
| Oil                                                                       |                                 |                                        |                                    |                                        |                                 |
| Lube Oil                                                                  | 0.0                             | 20.4                                   | 2.1                                | 20.4                                   | 20.4                            |
| Lube Oil                                                                  | 0.0                             | 20.4                                   | 2.1                                | 20.4                                   | 20.4                            |
| Dirty Oil                                                                 | 0.0                             | 3.2                                    | 31.8                               | 3.2                                    | 3.2                             |

| EMORIAL<br>NIVERSITY   |         |         |         |         | TR/     |
|------------------------|---------|---------|---------|---------|---------|
| Sludge                 | 0.0     | 5.0     | 48.9    | 5.0     | 5.0     |
| Passengers and Effects | 0.0     | 170.0   | 170.0   | 0.0     | 170.0   |
| Crew and Effects       | 0.0     | 17.0    | 17.0    | 17.0    | 17.0    |
| Passenger Vehicles     | 0.0     | 400.0   | 400.0   | 0.0     | 400.0   |
| Live Units             | 0.0     | 1564.0  | 1564.0  | 0.0     | 1564.0  |
| Drop Units             | 0.0     | 875.0   | 875.0   | 0.0     | 875.0   |
| Provisions             | 0.0     | 22.0    | 22.0    | 22.0    | 22.0    |
|                        |         |         |         |         |         |
| Total                  | 20223.0 | 24449.2 | 23930.1 | 21440.2 | 23350.5 |

## 9 HULL FORM

#### 9.1 DEVELOPMENT

Four factors guided the hull form development:

- Compatibility with boarding infrastructure
- Efficiency at high operating speeds
- Comfortable motion in a seaway
- Adequate volume for required vehicle and passenger capacities

A bespoke hull form was developed using DELFTship. Multiple iterations of the hull were completed to obtain a shape which would balance the previously mentioned factors.

The vessel has a fine hull entry and a relatively low block coefficient, reflecting the high service speed required to maintain Marine Atlantic's existing timetable. The ferry will be operating at a consistent speed, so a bulbous bow was added to improve the efficiency of the hull at the service speed. At this stage of development, the bulbous bow shown in the model and lines plan has not been optimized. This is work that would need to be completed in subsequent design phases.

The vessel also features a skeg to improve directional stability.

Like most large displacement ferries which operate around  $F_n = 0.25$ , the aft sections and buttocks were made wide and flat, and the transom edge was kept above the still waterline. This is done to minimize the risk of transverse waves being generated. Like the bulbous bow, the afterbody will need to be refined to ensure optimal flow and wave-generating characteristics.

The length and beam of the hull were limited by the terminal infrastructure. The vessel is as long and wide as permitted to meet the capacity requirements. The draft was similarly





constrained by the minimum water depth at the Marine Atlantic terminals and by the size of the selected podded propulsors.

The finalized preliminary design particulars are shown in Table 20 below.

| Length Overall (m)                    | 204.0    |
|---------------------------------------|----------|
| Waterline Length (m)                  | 188.0    |
| Beam (m)                              | 28.0     |
| Draft (m)                             | 6.7      |
| Displaced Volume (m <sup>3</sup> )    | 23,979.0 |
| Displacement (Tonnes)                 | 24,578.0 |
| Lightship (Tonnes)                    | 19,831.0 |
| Deadweight (Tonnes)                   | 4355.0   |
| Service Speed (knots)                 | 14.0     |
| Maximum Speed (Knots)                 | 20.0     |
| Block Coefficient                     | 0.627    |
| Froude Number (@ 20kts)               | 0.24     |
| Prismatic Coefficient                 | 0.645    |
| Waterplane Coefficient                | 0.790    |
| Midship Coefficient                   | 0.972    |
| Longitudinal Centre of Buoyancy       | -2.63%   |
| Wetted Surface Area (m <sup>2</sup> ) | 6080.4   |

Table 20: Finalized Vessel Particulars



Figure 11: Forward View of the Hull







Figure 12: Aft View of the Hull

#### 9.2 SECTIONAL AREAS CURVE

The sectional areas curve at the design draft of 6.7m was produced using DELFTship. It is shown in Figure 13.



Figure 13: Curve of Areas





#### 9.3 HYDROSTATICS

The vessels curves of form are shown in Figure 14. These curves were produced using DELFTship. Hydrostatic curves provide insight into various characteristics of the hull at varying drafts. They can also be used to determine the change in the draft due to the addition or removal of weights as well as determining the change in trim and heel due to relocating weights. The cross curves of stability, shown in Figure 15, were created using GHS.

A more detailed hydrostatics report is included in Appendix F.



Figure 14: Hydrostatic Curves







Figure 15: Cross Curves of Stability

#### 9.4 LINES PLAN

The lines plan was created using DELFTship. While the stern and midbody appear very fair, there are regions at the bow, particularly near the bulbous bow and the bow shoulder, which would require refinement. These refinements were not completed at this stage of design since the hull is bespoke and is expected to undergo numerous changes in later design stages as model tests and Computational Fluid Dynamic (CFD) simulations are performed. The lines plan is included in Appendix G.





## **10 RESISTANCE AND POWERING PREDICTIONS**

NavCAD 2019 was used to perform the initial resistance and powering predictions. The hull parameters used in this prediction are included in the Resistance and Propulsion Reports, provided in Appendix H.

#### **10.1 RESISTANCE PREDICTION**

The Holtrop-Mennen Method was used for the resistance predictions. This method is based on data collected from model tests of a wide variety of ship types, including ferries. The application of the method is limited to vessels with characteristics that fall within the ranges shown in Table 21. The ferry falls within the defined range, with the exception of the beam at the waterline to draft ratio, which it slightly exceeds. Although this is not ideal, the results will still be reasonably accurate and are sufficient for the purposes of predicting resistance at this stage of design.

| Parameter            | Range        | Value |  |
|----------------------|--------------|-------|--|
| Fn (at design speed) | 0.06 - 0.4   | 0.17  |  |
| C <sub>P</sub>       | 0.55 – 0.85  | 0.70  |  |
| LWL/BWL              | 3.90 - 14.90 | 6.71  |  |
| BWL/T                | 2.10 - 4.00  | 4.18  |  |
|                      |              |       |  |

Table 21: Holtrop Parameters

The bare hull resistance at various speeds in open water predicted using the Holtrop-Mennen method is summarized in Table 22 and Figure 16 below.

| Speed [Knots] | Total Resistance [kN] |  |  |
|---------------|-----------------------|--|--|
| 13.00         | 263.41                |  |  |
| 14.00         | 309.52                |  |  |
| 15.00         | 362.90                |  |  |
| 16.00         | 425.09                |  |  |
| 17.00         | 497.55                |  |  |
| 18.00         | 582.10                |  |  |
| 19.00         | 681.52                |  |  |
| 20.00         | 793.26                |  |  |
| 21.00         | 915.23                |  |  |
| 22.00         | 1060.40               |  |  |
|               |                       |  |  |

| Table (  | 22: | Vessel | Total | Resistance |
|----------|-----|--------|-------|------------|
| i ubic 4 | ~~. | VCSSCI | iotui | nesistance |


Figure 16: Speed versus Total Resistance Relationship

## **10.2 POWERING PREDICTION**

The propulsion prediction was also conducted using NavCAD 2019. In this prediction, the overall propulsion efficiency, total vessel brake power, and peak back cavitation percentages were estimated. The preliminary propulsor specifications used in this prediction are provided in Table 23.

| Count                | 2         |
|----------------------|-----------|
| Propeller Type       | FPP       |
| Propeller Series     | B-Series  |
| Blade Count          | 4         |
| Expanded Area Ratio  | 0.6500    |
| Propeller Diameter   | 4750.0 mm |
| Propeller Mean Pitch | 4250.0 mm |
| Hub Immersion        | 4211.0 mm |
|                      |           |

| Table 23: Design F | Propeller Data |
|--------------------|----------------|
|--------------------|----------------|

The propulsion prediction results are summarized in Table 24, and an SHP versus speed plot is provided in Figure 17.

| Table 24: Propulsion P | rediction Data |
|------------------------|----------------|
|------------------------|----------------|

| Speed [kn] | Overall Propulsion<br>Efficiency | SHP [kW] | Peak Back Cavitation<br>Percentage [%] |
|------------|----------------------------------|----------|----------------------------------------|
| 13.00      | 0.6467                           | 2724.0   | 2.0                                    |
| 14.00      | 0.6464                           | 3448.8   | 2.0                                    |

| MEMORIAL<br>UNIVERSITY |        |          | TRAK |
|------------------------|--------|----------|------|
| 15.00                  | 0.6459 | 4335.7   | 2.0  |
| 16.00                  | 0.6452 | 5423.4   | 2.0  |
| 17.00                  | 0.6441 | 6755.6   | 2.0  |
| 18.00                  | 0.6427 | 8387.4   | 2.0  |
| 19.00                  | 0.6407 | 10,397.3 | 2.0  |
| 20.00                  | 0.6384 | 12,783.9 | 2.0  |
| 21.00                  | 0.6361 | 15,544.0 | 2.8  |
| 22.00                  | 0.6330 | 18,959.7 | 4.1  |



Figure 17: Speed versus SHP

Approximately 12,784 kW of power would be required to attain the maximum speed of 20.0 knots. A 15% margin was applied to this estimate for conservatism. The required power is, therefore, 14,700 kW.

## **11 SEAKEEPING ANALYSIS**

The Cabot Strait between Newfoundland and Nova Scotia can be very rough. For people who are not used to the motion of a ship, such as passengers, the experience can be very uncomfortable. It is also not feasible to lash all vehicles carried by the ferry when rough weather is expected. To prevent damage to vehicles and ensure passenger comfort, the ferry must meet strict seakeeping limits. A seakeeping analysis for the hull form was completed using ShipMO3D developed by Defence Research and Development Canada. ShipMO3D uses 2-D potential flow theory to determine the seakeeping characteristics of the hull [25].





## 11.1 SEA STATE

Based on weather data collected for the Gulf of St. Lawrence, it was determined that the vessel should be assessed in Sea State 6 conditions as defined by the World Meteorological Organization (WMO) [5].

The WMO describes sea state six as "strong breezes of 22-27 knots, with wave heights of 9ft up to a maximum of 12 feet" [26]. Large waves begin to form in this state, with white foam crests being more prominent, typically with some spray occurring [26].

The Joint North Sea Wave Project (JONSWAP) wave spectrum was used for this analysis. It is best suited for fetch-limited areas, such as the North Sea and Offshore Eastern Canada [27].

Table 25 summarizes the sea condition inputs.

| Wave Spectrum               | JONSWAP                     |
|-----------------------------|-----------------------------|
| Wave Frequencies (rad/s)    | 0.2 – 2.0 (0.05 increments) |
| Significant Wave Height (m) | 5.0                         |
| Peak Period (s)             | 12.0                        |

Table 25: Wave parameters

## **11.2 CRITERIA**

There are no seakeeping requirements that the ferry must be designed to meet from DNV, Transport Canada, or other regulatory bodies. However, several seakeeping criteria have been developed. Some of the most common are the North Atlantic Treaty Organization Standardization Agreement (NATO STANAG) 4154, Nordic Co-Operative Organization for Applied Research (NORDFORSK 1987), and United States Coast Guard (USCG) Cutter Certification.

The vessel is required to meet the NORDFORK 1987 seakeeping limits for merchant ships. NORDFORSK limits were ultimately selected since they provide very strict limits specifically for passenger vessels. For the ferry to pass, vertical accelerations must be less than 0.1g and lateral accelerations less than 0.05g in passenger areas. These values correspond to the 0.5-hour exposure period for people not accustomed to ship motions.

A summary of the NORDFORSK (1987) limits is provided in Table 26.

Table 26: NORDFORSK (1987) Operating Limits for Merchant Vessels

| Limiting Criteria                       | Limits (Merchant Vessels) |
|-----------------------------------------|---------------------------|
| RMS of vertical accelerations at FP     | 0.275g                    |
| RMS of vertical accelerations at Bridge | 0.15g                     |
| RMS of lateral accelerations at Bridge  | 0.12g                     |
| RMS of Roll                             | 6.0 deg                   |





| Criteria Regarding Acceleration and Roll (RMS) | Vertical<br>Acceleration | Lateral Acceleration | Roll    |
|------------------------------------------------|--------------------------|----------------------|---------|
| Light Manual Work                              | 0.2g                     | 0.10g                | 6.0 deg |
| Heavy Manual Work                              | 0.15g                    | 0.07g                | 4.0 deg |
| Intellectual Work                              | 0.10g                    | 0.05g                | 3.0 deg |
| Transit Passengers                             | 0.05g                    | 0.04g                | 2.0 deg |
| Cruise Liner                                   | 0.02g                    | 0.03g                | 2.0 deg |

## **11.3 LOCATIONS ASSESSED**

Three areas throughout the vessel were assessed:

- Bridge
- Forward Perpendicular
- Passenger Accommodation

Their approximate locations are shown in Figure 18.

To assess motions in the passenger accommodation areas, a passenger cabin located at midships on the far starboard side of the uppermost passenger deck was chosen. At this location, the vertical accelerations due to rolling will be greatest. The cafeteria is the largest public area on the vessel, and many passengers are likely to sit in this space for the duration of the voyage. Its location at the forward end of the ship also means that it would be one of the more uncomfortable locations when sea conditions are rough, and therefore an important area to assess. The cafeteria is located directly beneath the bridge, so accelerations in the cafeteria can be measured using the results from the bridge.



Figure 18: Locations of Areas Assessed





## **11.4 ZERO SPEED ANALYSIS**

A seakeeping analysis was completed for the vessel at a speed of zero knots. Results from this analysis are compiled below in Table 27.

| Location              | Sea Heading (deg) | RMS Vert.<br>Acc. (g) | RMS Lat. Acc.<br>(g) | Pass (Y/N) |
|-----------------------|-------------------|-----------------------|----------------------|------------|
|                       | 0                 | 0.0310                | 0.0000               | Y          |
|                       | 45                | 0.0425                | 0.0160               | Y          |
| Bridge/Cafeteria      | 90                | 0.0555                | 0.0345               | Y          |
| -                     | 135               | 0.0493                | 0.0165               | Y          |
| -                     | 180               | 0.0381                | 0.0000               | Y          |
|                       | 0                 | 0.0402                | 0.0000               | Y          |
| -                     | 45                | 0.0534                | 0.0246               | Y          |
| Forward Perpendicular | 90                | 0.0565                | 0.0372               | Y          |
| -                     | 135               | 0.0607                | 0.0254               | Y          |
| -                     | 180               | 0.0473                | 0.0000               | Y          |
|                       | 0                 | 0.0104                | 0.0000               | Y          |
| -                     | 45                | 0.0235                | 0.0104               | Y          |
| Passenger -           | 90                | 0.0516                | 0.0335               | Y          |
| Accommodations -      | 135               | 0.0210                | 0.0106               | Y          |
| -                     | 180               | 0.0152                | 0.0000               | Y          |

Table 27: Zero Speed Seakeeping Analysis Results

## **11.5 DESIGN SPEED ANALYSIS**

A seakeeping analysis was also completed for the vessel at its design speed of 14 knots. Results from this analysis are compiled below in Table 28.

Table 28: Design Speed Seakeeping Analysis Results

| Location              | Sea Heading (deg) | RMS Vert.<br>Acc. (g) | RMS Lat. Acc.<br>(g) | Pass (Y/N) |
|-----------------------|-------------------|-----------------------|----------------------|------------|
|                       | 0                 | 0.0079                | 0.0000               | Y          |
|                       | 45                | 0.0137                | 0.0148               | Y          |
| Bridge/Cafeteria      | 90                | 0.0517                | 0.0455               | Y          |
|                       | 135               | 0.0962                | 0.0184               | Y          |
|                       | 180               | 0.0952                | 0.0000               | Y          |
|                       | 0                 | 0.0099                | 0.0000               | Y          |
| Forward Downordiaulou | 45                | 0.0166                | 0.0191               | Y          |
| Forward Perpendicular | 90                | 0.0517                | 0.0373               | Y          |
|                       | 135               | 0.1272                | 0.0295               | Y          |





|                             | 180 | 0.1274 | 0.0000 | Y |
|-----------------------------|-----|--------|--------|---|
| Passenger<br>Accommodations | 0   | 0.0034 | 0.0000 | Y |
|                             | 45  | 0.0133 | 0.0088 | Y |
|                             | 90  | 0.0505 | 0.0335 | Y |
|                             | 135 | 0.0519 | 0.0125 | Y |
|                             | 180 | 0.0487 | 0.0000 | Y |

## 11.6 RESULTS

The vessel passes the NORDFORSK (1987) criteria for all cases and sea directions. However, accelerations at the bridge/cafeteria are close to exceeding the 0.1g limit when the ship travels at 14 knots, and the sea direction is between 125° and 180°. It is worth noting that ShipMO3D did not account for the fin stabilisers or bilge keels for this preliminary analysis. With bilge keels and the two fin stabilizers extended it is likely that the vessel would be comfortably within the limits for those two scenarios.

## **12 POWERING**

#### **12.1 ELECTRIC LOAD ANALYSIS**

An electric load analysis was conducted to determine the power required for the vessel (Table 29). This takes into account the propulsion loads, hotel loads, and auxiliary loads for six different operational scenarios. The powering loads were determined from the resistance and propulsion predictions.

Data on hotel loads and auxiliary loads for a vessel of this size and type were challenging to obtain. As a result, for this early estimate, the hotel loads of a cruise ship were used and scaled based on the total installed power [31]. The hotel load of a cruise ship relative to its powering load is proportionally much larger than that of a RoPax ferry because of the more extensive passenger facilities. The results are therefore expected to be conservative; however, an additional 10% margin was applied to the total required power for each scenario to account for systems such as electric vehicle chargers, reefer unit electrical connections, and other miscellaneous items that may not have been accounted for originally.

From this analysis, the vessel will require a minimum of 21,200kW of installed power.





| Operating Scenario    |                        |              |                     |                                      |                                      |                                  |                                  |
|-----------------------|------------------------|--------------|---------------------|--------------------------------------|--------------------------------------|----------------------------------|----------------------------------|
| Systems               | Total<br>Power<br>(kW) | Port<br>(kW) | Manoeuvring<br>(kW) | Service<br>Speed –<br>Winter<br>(kW) | Service<br>Speed -<br>Summer<br>(kW) | Max<br>Speed –<br>Winter<br>(kW) | Max<br>Speed –<br>Summer<br>(kW) |
| Chiller and HVAC      | 2000                   | 1624.9       | 1700.0              | 1752.8                               | 1721.3                               | 1752.8                           | 1721.3                           |
| Galleys               | 430                    | 330.5        | 300.0               | 427.5                                | 425.0                                | 427.5                            | 425.0                            |
| Laundry               | 140                    | 140.0        | 50.0                | 85.5                                 | 85.0                                 | 85.5                             | 85.0                             |
| Lighting              | 110                    | 110.0        | 110.0               | 106.9                                | 85.0                                 | 106.9                            | 85.0                             |
| Emergency<br>Systems  | 150                    | 110.2        | 110.0               | 150.0                                | 150.0                                | 150.0                            | 150.0                            |
| Sockets               | 85                     | 55.1         | 75.0                | 85.0                                 | 85.0                                 | 85.0                             | 85.0                             |
| Lifts                 | 55                     | 55.0         | 50.0                | 42.8                                 | 42.5                                 | 42.8                             | 42.5                             |
| Leisure Facilities    | 35                     | 27.5         | 25.0                | 35.0                                 | 35.0                                 | 35.0                             | 35.0                             |
| Water Handling        | 400                    | 275.4        | 325.0               | 400.0                                | 400.0                                | 400.0                            | 400.0                            |
| Auxiliary             | 1500                   | 220.3        | 350.0               | 1500.0                               | 1500.0                               | 1500.0                           | 1500.0                           |
| Propulsion            | 15000                  | 0.0          | 1000.0              | 3591.0                               | 3612.5                               | 14700.0                          | 14700.0                          |
| Bow Thrusters         | 3300                   | 0.0          | 1000.0              | 0.0                                  | 0.0                                  | 0.0                              | 0.0                              |
| Total                 | 23205                  | 2948.8       | 5095.0              | 8176.4                               | 8141.3                               | 19585.4                          | 19528.8                          |
| Total<br>(10% Margin) | 25525.5                | 3243.7       | 5604.5              | 8994.0                               | 8955.4                               | 21192.3                          | 21151.6                          |

#### Table 29: Electric Load Analysis

## **12.2 ENGINE/GENERATOR SELECTION**

Based on the machinery arrangements of other RoPax ferries, four engines will be used to power the vessel. This arrangement provides greater flexibility in power.

Only dual-fuel LNG engines that meet IMO Tier III emissions requirements were considered. Splitting the required power equally between four engines equates to each engine needing to produce 5400kW.

One of the machinery arrangements considered was to use two Wartsila 10V31DF engines and two Wartsila 8V31DF engines. Each 8V31DF outputs 4080kW at 85% MCR. This would supply the necessary power for the hotel load, thus eliminating the need for a fifth small genset to provide power while in port. When in transit at full speed, the two 10V31DFs and two 8V31DFs would produce a combined 21,600kW, which exceeds the minimum power required. This arrangement was ultimately selected. A comparison of the engines considered is provided in Table 30, and Tables 31 and 32 provide a summary of the engine loads for the six operating scenarios.





| Engine<br>Manufacture | Engine<br>Model | Cylinder<br>Count | RPM | Output at<br>85% MCR | Output of<br>4 Engines<br>(kW) | LFO Fuel<br>Consumption at<br>MCR (g/kW) |
|-----------------------|-----------------|-------------------|-----|----------------------|--------------------------------|------------------------------------------|
| Bergen                | B33:45L         | 9                 | 720 | 5400                 | 21,600                         | 171.0                                    |
| Wartsila              | 8V31DF          | 8                 | 750 | 4080                 | 16,320                         | 179.0                                    |
| Wartsila              | 10V31DF         | 10                | 720 | 5800                 | 23,200                         | 178.2                                    |
| Wartsila              | 12V34DF         | 12                | 720 | 5760                 | 23,040                         | 185.2                                    |

Table 31: Engine Loads for Port, Manoeuvring, and Service Speed Sailing Scenarios

| Engine<br>Model | Port<br>(kW) | %MCR | Manoeuvring<br>(kW) | %MCR | Sailing @<br>Service<br>Speed –<br>Winter<br>(kW) | %MCR | Sailing @<br>Service<br>Speed -<br>Summer<br>(kW) | %MCR |
|-----------------|--------------|------|---------------------|------|---------------------------------------------------|------|---------------------------------------------------|------|
| 10V31DF         | 0            | 0%   | 5604.5              | 93%  | 5100                                              | 85%  | 5100                                              | 85%  |
| 10V31DF         | 0            | 0%   | 0                   | 0%   | 0                                                 | 0%   | 0                                                 | 0%   |
| 8V31DF          | 3243.7       | 68%  | 0                   | 0%   | 3894                                              | 81%  | 3855                                              | 80%  |
| 8V31DF          | 0            | 0%   | 0                   | 0%   | 0                                                 | 0%   | 0                                                 | 0%   |
| Total<br>(kW)   | 3243.7       |      | 5604.5              |      | 8994.0                                            |      | 8955.4                                            |      |

Table 32: Engine Loads for Maximum Speed Sailing Scenarios

| Engine Model | Sailing @<br>Max Speed<br>- Winter | %MCR | Sailing @<br>Max Speed<br>- Summer | %MCR |
|--------------|------------------------------------|------|------------------------------------|------|
| 10V31DF      | 5796                               | 97%  | 5776                               | 96%  |
| 10V31DF      | 5796                               | 97%  | 5776                               | 96%  |
| 8V31DF       | 4800                               | 100% | 4800                               | 100% |
| 8V31DF       | 4800                               | 100% | 4800                               | 100% |
| Total (kW)   | 21192                              |      | 21152                              |      |

## **12.3 PODDED THRUSTER SELECTION**

Based on the NavCAD powering prediction, the vessel requires 14,700 kW of power to attain the required 20kt maximum speed. Since the ferry will be operating in ice, an ice-strengthened pod was required. ABB has two Ice strengthened models- Azipod ICE and Azipod VI. The ICE models are only suitable for applications requiring 2MW – 5MW, while the Azipod VI model is suitable for applications which require power in the range of 6MW – 17MW [9]. The ferry will





have two pods; therefore, each pod is required to produce 7350kW [9]. The Azipod VI was consequently selected.

## **12.4 BOW THRUSTER SELECTION**

Wartsila provides a simple way of estimating the required bow thruster power based on the windage area of the vessel. The power of bow thrusters on ferries is generally between 0.6kW/m<sup>2</sup> and 0.8kW/m<sup>2</sup> [31]. The windage area of the vessel is 5095 m<sup>2</sup>. Bow thruster power should therefore be between 3057kW and 4076kW.

Marine Atlantic commissioned a study in 2015 by Oceanic Consulting Corporation to advise them on a suitable propulsion arrangement for a future vessel [8]. In this study, Oceanic determined that a 200m vessel with 2980kW of bow thruster power would be successful in navigating the harbours in east-northeast winds at the 40-knot mark, "the most challenging with respect to completing the docking manoeuvre successfully" [8]. It was therefore decided to use two Wartsila WTT-16 transverse thrusters, each with an output of 1650kW for a combined 3300kW of power [32]. This, combined with the podded propulsors, will ensure the vessel is highly manoeuvrable.

#### 12.5 FUEL ENDURANCE

Fuel requirements were assessed for the two routes Marine Atlantic services, as well as a transatlantic crossing to ensure the vessel is capable of repositioning from the shipyard where it will be built to Canada. The route lengths are provided below:

- 1. North Sydney to Port aux Basques (7hrs, 96nm)
- 2. North Sydney to Argentia (16.5hrs, 280nm)
- 3. Atlantic Crossing (166 hrs, 2320nm)

Table 33 and Table 34 summarize the required fuel capacity for each route for diesel and LNG fuel.

| Route    | Consumption<br>(Tonnes/kWh) | Time<br>(hrs) | Power<br>(kW) | Required<br>Fuel<br>(Tonnes) | Density<br>(Tonnes/m³) | Volume<br>(m³) | 15%<br>Reserve<br>(m³) |
|----------|-----------------------------|---------------|---------------|------------------------------|------------------------|----------------|------------------------|
| PAB      | 0.000179                    | 7             | 9000          | 11.3                         | 0.85                   | 13.27          | 15.26                  |
| ARG      | 0.000179                    | 17            | 12500         | 38.0                         | 0.85                   | 44.75          | 51.46                  |
| Atlantic | 0.000179                    | 166           | 9000          | 267.4                        | 0.85                   | 314.62         | 361.81                 |

| Table 33. Rec  | wired Fuel | Canacities | when us  | ina MDO  |
|----------------|------------|------------|----------|----------|
| 1 ubic 55. net | juncaruci  | cupacities | which us | ing wibo |



| Route    | Consumption<br>(MJ/kWh) | Time<br>(hrs) | Power<br>(kW) | Required Fuel<br>(MJ) | Density<br>(MJ/L) | Volume<br>(m³) | 15%<br>Reserve<br>(m³) |
|----------|-------------------------|---------------|---------------|-----------------------|-------------------|----------------|------------------------|
| PAB      | 7.109                   | 7             | 9000          | 447867.0              | 22.2              | 20.17          | 23.20                  |
| ARG      | 7.109                   | 17            | 12500         | 1510662.5             | 22.2              | 68.05          | 78.26                  |
| Atlantic | 7.109                   | 166           | 9000          | 10620846.0            | 22.2              | 478.42         | 550.18                 |

Table 34: Required Fuel Capacity when using LNG

#### 12.5.1 Emergency Generator

The ferry is required to have an emergency generator to supply power to critical systems in the event of an emergency. On passenger ships, the emergency generator must supply continuous power for at least 36 hours after a power failure. A Wartsila 8L32 genset was selected for this application. The fuel required to operate for 36 hours is calculated in Table 35.

Table 35: Emergency Generator Fuel Requirements

| Wartsila 8L32 Emergency Generator |          |                       |  |  |  |  |
|-----------------------------------|----------|-----------------------|--|--|--|--|
| Consumption                       | 0.000183 | Tonnes/kWh            |  |  |  |  |
| Time                              | 36       | hours                 |  |  |  |  |
| Power                             | 3944     | kW                    |  |  |  |  |
| <b>Required fuel</b>              | 26.0     | Tonnes                |  |  |  |  |
| Fuel Density                      | 0.9      | Tonnes/m <sup>3</sup> |  |  |  |  |
| Tank Volume                       | 28.9     | m³                    |  |  |  |  |
| 15% Reserve                       | 33.2     | m³                    |  |  |  |  |

## **12.6 ENERGY STORAGE SYSTEM**

The purpose of incorporating batteries into the propulsion system is to reduce emissions when near to shore. The ferry will operate solely on batteries while manoeuvring into and out of port, and they may also be used to power the hotel load when the vessel is tied up at the terminal. To determine a suitable battery size, it was assumed that manoeuvres take 0.5 hours to complete and that the batteries should be able to meet the electrical demands of the vessel when in port for up to 2 hours. A capacity of at least 9.3MWh was estimated, as shown in Table 36 below.

| Scenario    | Time<br>(hrs) | Power<br>(kW) | Required Energy<br>(kWh) |
|-------------|---------------|---------------|--------------------------|
| Manoeuvring | 0.5           | 5604.5        | 2802.3                   |
| In Port     | 2             | 3243.7        | 6487.4                   |
| Total (MWh) |               |               | 9.3                      |





This is quite a large battery for a ship; however, similar arrangements have been used aboard Color Line's MS Color Hybrid (5.0MWh) and Brittany Ferries' MS Saint-Malo (11.5MWh).

# **13 STABILITY**

## **13.1 APPLICABLE REGULATIONS**

A stability analysis was performed using GHS for five different loading conditions. The ferry is required to comply with the following two sets of criteria published by Transport Canada:

- TP 7301 E Stability, Subdivision, and Load Line Standards [33]
- TP 10943 E Passenger Vessel Operations and Damaged Stability Standards (Non-Convention Vessels) [34]

Transport Canada mandates that the stability of newbuild Ro-Ro passenger vessels must withstand the flooding of any two adjacent main compartments. In the case of symmetrical flooding, Transport Canada requires that there be a positive residual metacentric height of at least 0.05m. In the case of asymmetrical flooding, the equilibrium angle of heel for one-compartment flooding shall not exceed 7°. The area under the righting lever (GZ) curve must be greater than 0.015 meters, and the positive residual righting lever curve must have a minimum range of 10 to 15 degrees beyond the angle of equilibrium.

## **13.2 FLOODABLE LENGTHS**

Traditional watertight bulkheads on the vehicle decks of a Ro-Ro ferry would make loading vehicles a very complex and time-consuming process. They would also reduce the vehicle-carrying capacity of the ferry. As a result, watertight bulkheads do not extend through vehicle decks and will typically only reach just above the waterline. Should the vehicle decks flood, the free surface effect will take hold, which could lead to the vessel capsizing.

To mitigate the risks inherent in Ro-Ro ferry design, great care and an abundance of caution were given to the floodable length computations and bulkhead arrangements in the hull. DNV-RU-SHIP Pt 3 Chapter 2: General Arrangement Design [35] recommends vessels between 190m and 225m in length to have ten transverse subdivisions; however, this is subject to damaged stability calculations. The vessel was designed with 16 watertight subdivisions, each spaced 10m apart, except for the two engine compartments and the two LNG compartments, both of which extend 20m but are separated by a longitudinal watertight bulkhead.

The floodable lengths, demonstrating two-compartment flooding as per Transport Canada TP 10943 E [34] requirements, are shown in Figure 19. Ideally, with floodable lengths calculations, the arrangement of watertight subdivisions maximizes the length of each compartment such





that they are close to the floodable lengths curve. As shown in Figure 19 below, there is a significant margin between the allowable compartment size and the subdivision arrangements as designed. This level of subdivision is typical on large ro-ro ferries.



Figure 19: Floodable Lengths Curve

## **13.3 LOADING CONDITIONS**

A stability analysis was performed using GHS for five loading conditions – lightship, departure, arrival, light operating, and worst-case operating. The loading conditions are defined in TP 7301E Stab 5 [33].





#### 13.3.1 Worst-Case Operating Condition

The worst-case loading condition is defined as any condition likely to be encountered in service that reduces the GM and/or GZ values more than the other loading conditions. For this vessel, the worst-case operating condition was similar to the full departure condition but placed the heavy tractor semi-trailers on the uppermost deck and the lighter passenger vehicles loaded on the lower decks. This results in the VCG being approximately 0.7m higher than the VCG estimated for the full load departure condition.

#### 13.3.2 Light Operating Condition

The light operating condition is defined as the lightship condition, plus crew, fuel, water, and stores. The vessel will likely be built at an overseas shipyard, so this is a scenario the vessel will likely experience when it is repositioning from the shipyard to Newfoundland.

A summary of the loading conditions is provided below in Table 37.

|                         | Lightship | Full Load | Full Load | Light     | Worst Case |
|-------------------------|-----------|-----------|-----------|-----------|------------|
|                         | 0 1       | Departure | Arrival   | Operating | Operating  |
| Fuel                    | 0%        | 98%       | 10%       | 98%       | 98%        |
| L.O.                    | 0%        | 98%       | 10%       | 10%       | 98%        |
| Sludge                  | 0%        | 10%       | 98%       | 10%       | 2%         |
| FW                      | 0%        | 98%       | 10%       | 98%       | 98%        |
| GW                      | 0%        | 10%       | 98%       | 10%       | 2%         |
| BW                      | 0%        | 10%       | 98%       | 10%       | 2%         |
| Passenger Vehicles      | 0         | 200       | 200       | 0         | 200        |
| Live Units              | 0         | 45        | 45        | 0         | 45         |
| Drop Units              | 0         | 35        | 35        | 0         | 35         |
| Passengers and          | 0         | 1000      | 1000      | 0         | 1000       |
| Effects                 | 0         | 1000      | 1000      | 0         | 1000       |
| <b>Crew and Effects</b> | 0         | 100       | 100       | 100       | 100        |
| Provisions              | 0         | 22        | 22        | 22        | 22         |
|                         |           |           |           |           |            |

Table 37: Loading Conditions for Stability Analysis

#### 13.3.3 Ice Accretion

The impact of ice accretion on the vessel's stability was assessed for each loading condition. As per the Polar Code [10], ice accumulation was accounted for by assuming a weight of  $30 \text{kg/m}^2$  on the vessel's exterior decks and  $7.5 \text{kg/m}^2$  on the sides of the vessel [10].





### **13.4 INTACT STABILITY**

#### 13.4.1 Criteria

The intact stability analysis was performed to ensure that the design met the following criteria listed in TP 7301 E [30]:

- 1. The area under the righting lever (GZ) curve must be greater than 0.055m-radians up to a 30° angle of heel
- 2. The area under the righting lever (GZ) curve must be greater than 0.09m-radians up to 40° angle of heel or the angle of down flooding if it is less than 40°
- 3. The metacentric height (GM) must be greater than 0.15m when the vessel is upright
- 4. The area under the righting lever (GZ) must be less than 0.03m-radians between 30° and 40°, or between 30° and the down flooding angle if the down flooding angle is less than 40°
- 5. The righting lever (GZ) must have a value of 0.20m at a heel angle of at least 30°
- 6. The maximum righting lever (GZ) must occur at an angle of heel that is greater than 25°

Additionally, the vessel must meet the following IMO Severe Wind and Rolling Criteria:

- 1. Residual area ratio from roll to 50 degrees greater than 1
- 2. Residual area ratio from roll to flood or righting arm 0 greater than 1
- 3. Absolute angle at pre-roll less than 16 degrees
- 4. Angle from pre-roll to 80% deck immersion angle greater than 0 degrees

#### 13.4.2 Results

Table 38 provides a summary of the intact stability results from GHS. The ferry passes all the Transport Canada criteria. For more detailed intact stavility results refer to Appendix I.

| Req. | Limit           | Light  | Depart | Arrival | Arrival<br>(Ice) | Light<br>Op. | Worst<br>Op. | Worst<br>Op.<br>(Ice) | Pass<br>(Y/N) |
|------|-----------------|--------|--------|---------|------------------|--------------|--------------|-----------------------|---------------|
| 1    | >0.055<br>m-rad | 0.3049 | 0.2206 | 0.2211  | 0.2010           | 0.4161       | 0.1637       | 0.1429                | Y             |
| 2    | >0.09<br>m-rad  | 0.4375 | 0.3621 | 0.3629  | 0.3297           | 0.6981       | 0.2414       | 0.2069                | Y             |
| 3    | > 0.03<br>m-rad | 0.1327 | 0.1415 | 0.1418  | 0.1286           | 0.2820       | 0.0776       | 0.0641                | Y             |
| 4    | > 0.15m         | 2.130  | 1.360  | 1.202   | 1.060            | 2.432        | 1.046        | 0.915                 | Y             |
| 5    | > 0.2m          | 0.899  | 0.822  | 0.824   | 0.751            | 1.809        | 0.529        | 0.457                 | Y             |
| 6    | > 25°           | 26.42  | 33.49  | 33.28   | 32.90            | 57.76        | 27.97        | 27.59                 | Y             |
| 7    | > 1             | 1.902  | 4.098  | 4.130   | 3.960            | 3.005        | 2.212        | 1.860                 | Y             |
| 8    | >1              | 1.908  | 5.174  | 5.315   | 5.015            | 3.961        | 2.226        | 1.953                 | Y             |
|      |                 |        |        |         |                  |              |              |                       |               |

Table 38: Intact Stability Result Summary





| 8  | >1   | 1.908 | 5.174 | 5.315 | 5.015 | 3.961 | 2.226 | 1.953 | Y |
|----|------|-------|-------|-------|-------|-------|-------|-------|---|
| 9  | < 16 | 2.11  | 2.26  | 2.48  | 2.57  | 1.82  | 3.07  | 3.36  | Y |
| 10 | > 0  | 39.56 | 35.74 | 35.46 | 35.24 | 38.14 | 36.36 | 35.95 | Y |

### **13.5 DAMAGED STABILITY**

#### 13.5.1 Criteria

A damaged stability analysis was performed to ensure that the design met the following criteria as listed in TP 10943 E [34]:

- 1. The metacentric height (GM) must exceed 0.10m.
- 2. The righting lever (GZ) at the maximum righting angle must be greater than 0.050m.
- 3. The absolute angle at equilibrium must be less than 7°.
- 4. Angle from Equilibrium to deck margin Immersion >0
- 5. The area under the righting lever (GZ) curve must be greater than 0.015m-radians when the ship is at a 22° heel angle or when down flooding occurs.

#### 13.5.2 Critical Points

Three critical points were checked. Their locations are approximated in Figure 20. The uppermost vehicle deck is an open deck to provide ventilation for vehicles carrying hazardous cargo. In damaged conditions where the bow or stern sinks lower in the water, the vehicle deck could flood from the open bow/stern ends. If water enters the deck, it could then flood the lower compartments via the main stairwell which connects to all the vessel's decks.



Figure 20: Locations of Critical Points

#### 13.5.3 Results

The ferry passes all the listed damage criteria, with the exception of damaged departure and arrival scenarios when compartments 7 and 8 are flooded. Compartment 8 houses the LNG tanks and is double the length of a typical compartment. In the next iteration of the design, the size of the surrounding compartments should be reduced.





The results for the damaged stability under all loading conditions and flooded compartment combinations are presented in Tables 39 through 43. For more detailed results on the failing cases, refer to Appendix J, which presents the GHS reports for each scenario.

Table 39: Departure Damage Stability Results

|             |               |                                 | REQUI                               | REMENTS                                                  |                                                 |      |
|-------------|---------------|---------------------------------|-------------------------------------|----------------------------------------------------------|-------------------------------------------------|------|
| COMPARTMENT | GM<br>Upright | Absolute<br>Angle at<br>Max. RA | Absolute<br>Angle at<br>Equilibrium | Angle from<br>Equilibrium to<br>Deck/Margin<br>Immersion | Area from<br>Equilibrium to<br>abs 22° or Flood | Pass |
|             | > 0.1m        | > 0.05m                         | < 7°                                | > 0°                                                     | > 0.015m-rad                                    | Y/N  |
| 1&2         | 1.614         | 1.018                           | 0.00                                | 47.66                                                    | 0.1486                                          | Y    |
| 2&3         | 1.604         | 1.190                           | 0.00                                | 46.69                                                    | 0.1522                                          | Y    |
| 3&4         | 1.389         | 1.324                           | 0.00                                | 45.69                                                    | 0.1414                                          | Y    |
| 4&5         | 0.947         | 1.310                           | 0.00                                | 44.33                                                    | 0.0696                                          | Y    |
| 5&6         | 1.044         | 1.288                           | 0.00                                | 45.09                                                    | 0.0892                                          | Y    |
| 6&7         | 1.307         | 1.321                           | 0.00                                | 45.28                                                    | 0.0960                                          | Y    |
| 7&8         | 1.439         | 1.409                           | 0.00                                | 44.32                                                    | 0.0562                                          | Y    |
| 8&9         | 1.479         | 1.553                           | 0.00                                | 45.34                                                    | 0.1167                                          | Y    |
| 9&10        | 1.748         | 1.390                           | 0.00                                | 47.14                                                    | 0.1378                                          | Y    |
| 10&11       | 1.585         | 1.334                           | 0.00                                | 47.65                                                    | 0.1339                                          | Y    |
| 11&12       | 1.221         | 1.608                           | 0.00                                | 47.43                                                    | 0.1279                                          | Y    |
| 12&13       | 1.021         | 1.598                           | 0.00                                | 46.12                                                    | 0.1190                                          | Y    |
| 13&14       | 1.375         | 0.989                           | 0.00                                | 49.17                                                    | 0.1161                                          | Y    |
| 14&15       | 1.208         | 0.904                           | 0.00                                | 49.46                                                    | 0.1028                                          | Y    |
| 15&16       | 0.670         | 1.096                           | 0.00                                | 49.63                                                    | 0.0919                                          | Y    |
| 16&17       | 1.083         | 1.034                           | 0.00                                | 49.63                                                    | 0.1198                                          | Y    |

#### Table 40: Arrival Damage Stability Results

|             |               |                                 | REQUIF                              | REMENTS                                                  |                                                    |      |
|-------------|---------------|---------------------------------|-------------------------------------|----------------------------------------------------------|----------------------------------------------------|------|
| COMPARTMENT | GM<br>Upright | Absolute<br>Angle at<br>Max. RA | Absolute<br>Angle at<br>Equilibrium | Angle from<br>Equilibrium to<br>Deck/Margin<br>Immersion | Area from<br>Equilibrium to<br>abs 22° or<br>Flood | Pass |
|             | > 0.1m        | > 0.05m                         | < 7°                                | > 0°                                                     | > 0.015m-rad                                       | Y/N  |
| 1&2         | 1.392         | 0.967                           | 0.00                                | 46.18                                                    | 0.1249                                             | Y    |
| 2&3         | 1.090         | 0.983                           | 0.00                                | 45.15                                                    | 0.1085                                             | Y    |
| 3&4         | 0.878         | 0.930                           | 0.00                                | 45.16                                                    | 0.0946                                             | Y    |
| 4&5         | 0.146         | 1.819                           | 0.00                                | 42.31                                                    | 0.0767                                             | Y    |
| 5&6         | 0.763         | 1.892                           | 0.00                                | 42.59                                                    | 0.1017                                             | Y    |
| 6&7         | 0.857         | 1.925                           | 0.00                                | 42.89                                                    | 0.1084                                             | Y    |
| 7&8         | 0.167         | 2.172                           | 0.00                                | 40.90                                                    | 0.0775                                             | Y    |
| 8&9         | 0.945         | 2.090                           | 0.00                                | 42.92                                                    | 0.1262                                             | Y    |
| 9&10        | 1.149         | 1.795                           | 0.00                                | 45.02                                                    | 0.1360                                             | Y    |
| 10&11       | 1.072         | 1.884                           | 0.00                                | 45.21                                                    | 0.1380                                             | Y    |
| 11&12       | 0.988         | 1.894                           | 0.00                                | 45.04                                                    | 0.1222                                             | Y    |
|             |               |                                 |                                     |                                                          |                                                    |      |





| 12&13 | 0.920 | 1.953 | 0.00 | 43.71 | 0.1121 | Y |
|-------|-------|-------|------|-------|--------|---|
| 13&14 | 1.202 | 1.991 | 0.00 | 45.21 | 0.1400 | Y |
| 14&15 | 1.036 | 2.008 | 0.00 | 44.94 | 0.1332 | Y |
| 15&16 | 0.603 | 1.914 | 0.00 | 45.56 | 0.1062 | Y |
| 16&17 | 0.804 | 1.859 | 0.00 | 46.84 | 0.1253 | Y |

Table 41: Arrival with Ice Damage Stability Results

|             |               |                                 | REQUIR                              | EMENTS                                                   |                                                 |      |
|-------------|---------------|---------------------------------|-------------------------------------|----------------------------------------------------------|-------------------------------------------------|------|
| COMPARTMENT | GM<br>Upright | Absolute<br>Angle at<br>Max. RA | Absolute<br>Angle at<br>Equilibrium | Angle from<br>Equilibrium to<br>Deck/Margin<br>Immersion | Area from<br>Equilibrium to<br>abs 22° or Flood | Pass |
|             | > 0.1m        | > 0.05m                         | < 7°                                | > 0°                                                     | > 0.015m-rad                                    | Y/N  |
| 1&2         | 1.248         | 0.889                           | 0.00                                | 46.03                                                    | 0.1135                                          | Y    |
| 2&3         | 0.947         | 0.899                           | 0.00                                | 45.00                                                    | 0.0973                                          | Y    |
| 3&4         | 0.735         | 0.851                           | 0.00                                | 45.00                                                    | 0.0834                                          | Y    |
| 4&5         | 0.204         | 1.875                           | 0.00                                | 41.87                                                    | 0.0755                                          | Y    |
| 5&6         | 0.814         | 1.948                           | 0.00                                | 42.16                                                    | 0.1010                                          | Y    |
| 6&7         | 0.815         | 1.979                           | 0.00                                | 42.45                                                    | 0.1072                                          | Y    |
| 7&8         | 0.032         | 2.079                           | 0.00                                | 40.75                                                    | 0.0682                                          | Ν    |
| 8&9         | 0.776         | 1.996                           | 0.00                                | 42.76                                                    | 0.1159                                          | Y    |
| 9&10        | 0.994         | 1.700                           | 0.00                                | 44.88                                                    | 0.1253                                          | Y    |
| 10&11       | 0.919         | 1.790                           | 0.00                                | 45.06                                                    | 0.1273                                          | Y    |
| 11&12       | 0.835         | 1.799                           | 0.00                                | 44.75                                                    | 0.1117                                          | Y    |
| 12&13       | 0.769         | 1.858                           | 0.00                                | 43.40                                                    | 0.0984                                          | Y    |
| 13&14       | 1.052         | 1.896                           | 0.00                                | 44.93                                                    | 0.1295                                          | Y    |
| 14&15       | 0.888         | 1.914                           | 0.00                                | 44.65                                                    | 0.1228                                          | Y    |
| 15&16       | 0.458         | 1.820                           | 0.00                                | 45.25                                                    | 0.0959                                          | Y    |
| 16&17       | 0.661         | 1.766                           | 0.00                                | 46.70                                                    | 0.1145                                          | Y    |

Table 42: Light Operating Damage Stability Results

|             |               | REQUIREMENTS                    |                                     |                                                          |                                                 |      |
|-------------|---------------|---------------------------------|-------------------------------------|----------------------------------------------------------|-------------------------------------------------|------|
| COMPARTMENT | GM<br>Upright | Absolute<br>Angle at<br>Max. RA | Absolute<br>Angle at<br>Equilibrium | Angle from<br>Equilibrium to<br>Deck/Margin<br>Immersion | Area from<br>Equilibrium to<br>abs 22° or Flood | Pass |
|             | > 0.1m        | > 0.05m                         | < 7°                                | > 0°                                                     | > 0.015m-rad                                    | Y/N  |
| 1&2         | 2.495         | 2.003                           | 0.00                                | 46.58                                                    | 0.2280                                          | Y    |
| 2&3         | 2.242         | 2.050                           | 0.00                                | 45.57                                                    | 0.2113                                          | Y    |
| 3&4         | 2.114         | 1.995                           | 0.00                                | 45.56                                                    | 0.1998                                          | Y    |
| 4&5         | 1.398         | 1.980                           | 0.00                                | 44.21                                                    | 0.1259                                          | Y    |
| 5&6         | 1.780         | 1.967                           | 0.00                                | 44.97                                                    | 0.1473                                          | Y    |
| 6&7         | 1.363         | 2.078                           | 0.00                                | 44.70                                                    | 0.1523                                          | Y    |
| 7&8         | 1.558         | 2.003                           | 0.00                                | 44.23                                                    | 0.1062                                          | Y    |
| 8&9         | 2.152         | 2.244                           | 0.00                                | 44.87                                                    | 0.1733                                          | Y    |
| 9&10        | 2.388         | 2.078                           | 0.00                                | 46.51                                                    | 0.1934                                          | Y    |
|             |               |                                 |                                     |                                                          |                                                 |      |





| 10&11 | 2.294 | 2.023 | 0.00 | 47.04 | 0.1897 | Y |
|-------|-------|-------|------|-------|--------|---|
| 11&12 | 1.970 | 2.285 | 0.00 | 46.83 | 0.1852 | Y |
| 12&13 | 1.863 | 2.435 | 0.00 | 47.18 | 0.1854 | Y |
| 13&14 | 2.215 | 1.871 | 0.00 | 48.28 | 0.1807 | Y |
| 14&15 | 2.104 | 1.759 | 0.00 | 48.55 | 0.1673 | Y |
| 15&16 | 1.524 | 1.947 | 0.00 | 48.72 | 0.1566 | Y |
| 16&17 | 1.890 | 1.888 | 0.00 | 48.73 | 0.1853 | Y |

Table 43: Worst Case Operating Damage Stability Results

|             |               |                                 | REQUI                               | REMENTS                                                  |                                                    |      |
|-------------|---------------|---------------------------------|-------------------------------------|----------------------------------------------------------|----------------------------------------------------|------|
| COMPARTMENT | GM<br>Upright | Absolute<br>Angle at<br>Max. RA | Absolute<br>Angle at<br>Equilibrium | Angle from<br>Equilibrium to<br>Deck/Margin<br>Immersion | Area from<br>Equilibrium to<br>abs 22° or<br>Flood | Pass |
|             | > 0.1m        | > 0.05m                         | < 7°                                | > 0°                                                     | > 0.015m-rad                                       | Y/N  |
| 1&2         | 0.718         | 0.612                           | 0.00                                | 47.03                                                    | 0.0877                                             | Y    |
| 2&3         | 0.317         | 0.584                           | 0.00                                | 46.01                                                    | 0.0704                                             | Y    |
| 3&4         | 0.569         | 0.916                           | 0.00                                | 44.78                                                    | 0.0874                                             | Y    |
| 4&5         | 0.143         | 2.055                           | 0.00                                | 41.95                                                    | 0.0881                                             | Y    |
| 5&6         | 0.201         | 1.658                           | 0.00                                | 42.45                                                    | 0.0815                                             | Y    |
| 6&7         | 0.124         | 0.947                           | 0.00                                | 44.64                                                    | 0.0507                                             | Y    |
| 7&8         | -0.725        | 1.381                           | 13.04                               | 28.57                                                    | 0.0230                                             | Ν    |
| 8&9         | 0.593         | 0.577                           | 0.00                                | 45.47                                                    | 0.0390                                             | Y    |
| 9&10        | 1.015         | 0.451                           | 0.00                                | 47.23                                                    | 0.0603                                             | Y    |
| 10&11       | 0.941         | 0.470                           | 0.00                                | 47.71                                                    | 0.0586                                             | Y    |
| 11&12       | 0.437         | 0.651                           | 0.00                                | 47.49                                                    | 0.0542                                             | Y    |
| 12&13       | 0.198         | 0.619                           | 0.00                                | 48.16                                                    | 0.0451                                             | Y    |
| 13&14       | 0.534         | 0.470                           | 0.00                                | 49.17                                                    | 0.0548                                             | Y    |
| 14&15       | 0.365         | 0.422                           | 0.00                                | 49.46                                                    | 0.0415                                             | Y    |
| 15&16       | 0.209         | 1.341                           | 0.00                                | 46.57                                                    | 0.0714                                             | Y    |
| 16&17       | 0.531         | 0.392                           | 0.00                                | 49.67                                                    | 0.0511                                             | Y    |

## **14 VEHICLE HANDLING AND VEHICLE DECK REQUIREMENTS**

#### 14.1 HAZARDOUS CARGO

The vehicle deck on A deck is open at the stern and bow to provide ventilation for vehicles carrying hazardous goods. The vehicle decks on B deck and C deck are ventilated using air exchangers. This ensures that gasses do not accumulate to create a dangerous environment. SOLAS regulations require a minimum of 10 air changes per hour in vehicle decks for RO-RO vessels carrying more than 36 passengers [33].





## 14.2 BOW AND STERN DOORS/RAMPS

The ferry has four ramps to allow for simultaneous two-deck loading from both the bow and stern. The ramp at the bow on B deck is protected by clam-type bow doors. A visor-type bow door protects the A deck bow ramp. Both stern ramps are a straight type.

Several rules should be followed regarding the bow and stern doors/ramps. The bow doors must be located above the freeboard deck. Where the bow doors lead into a complete or a long forward enclosed superstructure, an inner door must be fitted, as in this preliminary ferry design. Outer doors need to be fitted to ensure water tightness consistent with operational conditions and effectively protect the inner doors. Inner doors forming part of the collision bulkhead have to be weather-tight over the cargo space's full height and be arranged with supports on the aft side of the doors.

Bow doors have to be arranged to preclude the possibility of the outer door causing structural damage to the collision bulkhead and the inner door in the case of damage or detachment of the door. To comply with requirements, the outer bow door is not be attached to structural elements which form part of the collision bulkhead or to the upper deck at a position aft of the collision bulkhead at the point of attachment [36]. It is also important to note that the bow/stern doors must be of a similar material to the rest of the hull.

### **14.3 BETWEEN DECK RAMPS**

The vessel has been arranged with two hoistable internal ramps to allow vehicles to move between decks. When closed, these ramps act as watertight doors and must prevent water from flooding down to the lower vehicle decks. These ramps typically require a length that is eight times the height between the decks [37]. The full height of the main vehicle decks is 5.5m. The ramp joining A deck and B deck must therefore be at least 44m long. The lower vehicle deck, located on C deck, will not be used for large commercial trucks. The ramp can therefore have a larger slope. A ratio of 5:1 was used, giving the ramp a length of 17.5m.

MACGREGOR manufactures these types of ramps for RoPax ferries [37]. Exact dimensions, placement, and loading requirements would be determined in later design stages in consultation with representatives of MACGREGOR.

## **14.4 Vehicle Chargers**

A study was conducted to determine appropriate electric vehicle charging stations for the vessel. A Level 2 charger has been deemed the most suitable to meet the requirements of the consumers. The vehicle chargers would be arranged along the central trunk on A and B deck, with chargers being spaced 5m apart to accommodate both pickup trucks and cars. This will allow up to 64 vehicles to charge at once.





## **15 EQUIPMENT SELECTION**

### **15.1 LIFE-SAVING EQUIPMENT**

#### 15.1.1 Lifeboat Selection

Vessels on short voyages must carry totally enclosed lifeboats with the capacity to hold at least 30% of the total number of persons on board [10].

The Viking Norsafe Maxima – 120 MKI (Figure 21) was selected for its 150-person capacity and relatively small size. The ferry will have four of these boats (two on each side). Combined, these boats can carry 600 people or 54.5% of all persons onboard. These boats are built in accordance with IMO and SOLAS requirements and have positive stability up to 180°. They are launched by a cantilevered platform davit and are constructed with fire-retardant glass-fibre reinforced polyester [46].



Figure 21: Viking Norsafe Maxima - 120MKI [46]

#### 15.1.2 Fast Rescue Craft Selection

Passenger vessels over 500 gross tonnage are required to have a Fast Rescue Craft (FRC) on both sides of the vessel [10]. The Narwhal FRB-700 (Figure 22) will act as the FRC for this ferry. Each of the FRCs will be located adjacent to the lifeboats near the centre of the vessel. The FRD-700 is equipped with a Volvo DS-220 HP engine, water jet propulsion, and has a fuel endurance of 4 hours [47]. This craft can serve multiple roles by towing life rafts and rescuing passengers who have fallen overboard. In desperate situations, the craft can reach land from anywhere along the Port-aux-Basque route at a maximum speed with four passengers on board of 32 knots [47].







Figure 22: Narwhal FRB-700 [47]

#### 15.1.3 Life Raft Selection

The Viking 150DKS (Figure 23) was selected as part of the evacuation equipment. These rafts can hold 153 persons and can be connected to the vessel using a chute or slide for rapid evacuation. There will be two of these rafts on either side, totalling 612-person capacity. These have a lifespan of 15-20 years, are SOLAS approved, and self-righting [48]. They will need to be replaced at least once during the ferry's service life.



Figure 23: Viking 150DKS [48]

## **16 GENERAL ARRANGEMENTS**

The general arrangement drawings of the ferry are provided in Appendix K. The ship is split into eight decks. The upper decks (1 - 4) are reserved for passenger and crew accommodations. Decks A and B are the main vehicle decks and decks C – Tank Top are for machinery. Four main vertical zones extend the height of the ship. A detailed description of each deck is provided below.

#### **16.1 ACCOMMODATION DECK ARRANGEMENTS**

Accommodations can be found on decks one through four, as described below.





#### 16.1.1 Deck 4

The top deck houses 92 single crew cabins, each with a private washroom, closet, and desk, as recommended in the Maritime Occupational Health and Safety Regulations (MOHS) [6]. Two laundry rooms and linen storage closets are located on this deck to keep up with the housekeeping demands of the crew. The crew's galley and mess are also located at the forward end of this deck. The galley is equipped with a service elevator to make transporting provisions from the store's rooms on the lower deck up to the galley easier and faster. There is also a gym and a quiet lounge for crew only. An additional elevator located across from the laundry rooms has been included to allow the crew to move about the ship more quickly.

Three service trunks extend nearly the hull height of the vessel. They connect to the HVAC spaces in order to supply conditioned air to all decks.

### 16.1.2 Deck 3

The second deck from the top houses 91 passenger cabins, each equipped with four berths and a private head and shower. There are also six wheelchair cabins located close to the elevators. It is a requirement for at least 5% of all passenger cabins to be wheelchair accessible [49]. There are 200 cabins on the ship, therefore, ten cabins must be fully accessible. Six wheelchair cabins are located on Deck 3, with the remaining four on Deck 2.

The aft end of the deck houses a passenger lounge area with access to exterior decks on both port and starboard sides.

The bridge is located at the forward end of this deck and is arranged with a central navigation station as well as a control station located on both the port and starboard bridge wings to assist in manoeuvring the vessel. The aft end of the bridge is equipped with a chart room, storage space and a heads compartment. A conference room, officer's mess, stores office, and ships office are located directly aft of the bridge. Four senior officer cabins, a commanding officer cabin, and a chief engineer cabin are located immediately aft of the bridge to allow easy and quick access if needed.

Four HVAC spaces have been allocated on this deck, one large compartment within the two aft main vertical zones and two smaller compartments in the forward main vertical zones.

#### 16.1.3 Deck 2

The third deck from the top contains 116 cabins. There are four wheelchair-accessible cabins located near elevators. The vessel also has eight suites located at the forward end of the superstructure. A large exterior deck can be accessed at the aft end. This area is also where the kennels are located. The pet-friendly cabins are also at the aft end, so they are close to the exterior deck.





Access to the life rafts located on the deck below can be found toward midship by stairs connecting to the lower deck.

The emergency generator is located at the aft end of the deck to provide power for essential systems in an emergency.

#### 16.1.4 Deck 1

Deck 1 is the main public deck. Most passenger amenities are on this deck, including a truck drivers lounge, gym, arcade, two small cinemas, quiet lounge, a larger lounge, travel items shop, pursers office (service desk), and a cafeteria.

Within the cafeteria space is a galley and small stores room. The main stores are located at the bottom of the ship; however, the service lift located inside the cafeteria stores leads directly to the main stores.

The primary access to the lifeboats and rafts is also on this deck. The main lounge, which acts as the primary muster station, is centrally located with multiple points of access to ensure passengers can quickly reach the station. IMO requires a minimum of  $0.35m^2$  per person of deck space for each person assigned to the muster station. For 1100 people on board, the muster station must be at least  $385m^2$ . The lounge is  $560m^2$ , so it will provide more than enough space for the passengers to gather prior to evacuating the vessel.

#### **16.2 VEHICLE DECK ARRANGEMENTS**

Vehicle decks can be found on the A, B, and C decks. Decks A and B are the main vehicle decks with a clear height of 5.0m, while deck C is reserved for cars only and has a free deck height of 3.0m.

#### 16.2.1 A Deck

The first vehicle deck is located on A deck and has 1566 lane meters. A hoistable ramp is located toward the vessel's port side to allow vehicles to move between Deck A and Deck B. This is important for the North Sydney to Argentia route, as the Argentia terminal only allows for single-deck loading. Mooring stations are located at the bow and stern on both sides of the vessel.

#### 16.2.2 B Deck

The second vehicle deck is located on B deck and has a 1465 lane meter capacity. There is a second hoistable ramp located on the starboard side to allow vehicles to access the smaller vehicle deck on Deck C. Rope stores are located directly below the mooring stations on A deck.





#### 16.2.3 C Deck

C deck contains the small vehicle deck located toward the bow with a 232 lane meter vehicle capacity.

### **16.3 MACHINERY ARRANGEMENTS**

Machinery arrangements can be found on the C, D, and tank top decks. The Machinery Arrangement drawings can be found in Appendix L.

### 16.3.1 C Deck

C deck is the uppermost deck containing machinery spaces. At the aft end of the deck are the azimuth compartments. A longitudinal watertight bulkhead separates the port pod compartment from the starboard pod compartment. Forward of that is the electrical compartment, battery compartments, and incinerator and waste storage and sorting compartments. At the forward end of the deck are spaces dedicated to food stores and the lower vehicle deck, which is accessible via a hoistable ramp. The Air Lubrication System compressors are also located on this deck, as are hookups for the shore power connection.

#### 16.3.2 D Deck

Deck D has access to the engines from above as well as a domestic machinery space and Engine Control Room (ECR). Aft of the engine rooms is the switchboard compartment. A gas handling room is located aft of the LNG tank compartment and is outfitted with airlocks to provide access to the tanks.

Forward of the LNG tanks water treatment plants, stores compartments, and a pump compartment. The forwardmost compartment contains the two bow thrusters.

#### 16.3.3 Tank top

A pump room is located on the aft end of this deck with the engine compartment forward of it. Forward of the engine compartment are various workshops and an auxiliary machinery space. There is also a second pump room. The second pump room has access points into the LNG tank compartment through airlocks. The aft end of the LNG compartment is also equipped with airlocks, thus allowing access from both the forward and aft ends. Forward of the LNG tank compartment is the freshwater generator plant. Stores compartments and the third pump room can be found at the forward end. The housings for the active fin stabilizers are also on this deck.

## **16.4 TANK ARRANGEMENTS**

There are two LNG fuel tanks that supply the four engines. They have a combined volume of 900m<sup>3</sup>. This amount of fuel is more than would be needed to complete the North Sydney to Argentia crossing (the longest voyage Marine Atlantic services) but would enable the ferry to





potentially make a transatlantic crossing if the vessel is built overseas or used on a longer route should the vessel be sold in the future. It also allows multiple crossings to be completed without needing to refuel.

The LNG must be stored at high pressure (~9 bar) and low temperature (~-160°C). This requires a specialized cylindrical tank design that can withstand the pressure and be easily insulated. Each of the eight tanks is 5.5m in diameter and 16m long. They are divided into two watertight compartments and are located above the double bottom. There is space under each tank for a drip tray to catch and identify potential leaks.

The vessel has two sea bays and eight sea chests (four lower chests and four higher chests for when the vessel is transiting through the ice). These are located at the forward end of the engine compartment and near the auxiliary machinery compartment.

The vessel also has two-day tanks – one in each engine room for when it is operating on MDO.

The lubrication oil is stored in two tanks in the compartment directly aft of the engine room. This placement reduces the length of pipe required to service the machinery contained within the engineering spaces. The tanks have been sized to hold 21 tonnes of oil each. Figure 24 provides a visualization of the tank and watertight compartment arrangements.

Detailed tank arrangements are included in the capacity plan provided in Appendix M.



Figure 24: Visualization of the Tank Arrangement

## **16.5 MAIN VERTICAL FIRE ZONES**

The vessel is divided into four main vertical fire zones to comply with SOLAS Chapter II – Fire Protection and Detection and Extinction Regulations [50].

As per regulation 2.2.1.1, the bulkheads forming the boundaries of the main vertical zones above the bulkhead deck are in line with the watertight subdivision bulkheads below the bulkhead deck. The length and width of the main vertical zones can be a maximum of 48 meters or no greater than 1600 m<sup>2</sup> on any deck.





# **17 AREA/VOLUMES SUMMARY**

A summary of the total deck area and volume is provided in Table 44. A detailed deck-by-deck area/volume summary is included in Appendix N.

| Deck           | Area (m <sup>2</sup> ) | Enclosed Volume (m <sup>3</sup> ) |
|----------------|------------------------|-----------------------------------|
| Below Tank Top | 3376                   | 6751                              |
| Above Tank Top | 3306                   | 9917                              |
| D Deck         | 4056                   | 12169                             |
| C Deck         | 4710                   | 16485                             |
| B Deck         | 4818                   | 26497                             |
| A Deck         | 5055                   | 27803                             |
| Deck 1         | 3738                   | 11215                             |
| Deck 2         | 3470                   | 10411                             |
| Deck 3         | 3660                   | 10981                             |
| Deck 4         | 2066                   | 6198                              |
| Total          | 38255                  | 138426                            |

Table 44: Per deck area/volume summary

## **18 SYSTEMS**

#### **18.1 Firefighting Systems**

The purpose of the firefighting systems is to suppress and extinguish a fire in its place of origin efficiently. The following functional requirements will be met:

- Fixed fire-extinguishing systems shall be installed, having regard to the fire growth potential of protected spaces; and
- Fire extinguishing equipment will be made readily available.

The vessel's firefighting systems will be designed to meet the International Convention for the Safety of Life at Sea (SOLAS) regulations as outlined in Part C- Suppression of Fire, Regulation 10 – Firefighting [50].

The firefighting arrangements will be determined in later stages of design; however, there are some important elements which should be considered when planning out spaces early on in the vessel's design.

At least three independently driven fire pumps should be integrated into the design (2.2.2.1). They will be arranged such that in the event of a fire in any one compartment, all fire pumps will not be put out of action (2.2.3.1.1). The space containing the fire pump will not be adjacent





to the boundaries of the machinery spaces of category A (spaces or trunks to spaces which contain internal combustion machinery [51] or those spaces which contain the main fire pumps). There should not be direct access between the machinery space and the space housing the emergency fire pump and its power source (2.2.3.2.2).

For passenger ships, each machinery space of category A must be provided with at least two suitable water fog applicators (5.5). Machinery spaces of category A above 500m<sup>3</sup> will need to be protected by an approved type of fixed water-based or equivalent firefighting system in addition to a fixed firefighting system.

The vessel will also be equipped with an automatic sprinkler, fire detection, and fire alarm system of an approved type that complies with the fire safety systems code in all control stations, accommodation, and service spaces, including corridors and stairways. For control stations where water could cause damage to essential equipment, an approved fixed firefighting system of another type can be used (6.1.1).

## 18.2 HVAC

A ship's heating, ventilation, and air conditioning (HVAC) is usually the second largest power consumer after the propulsion systems. The extensive accommodation areas will require a substantial HVAC plant onboard the vessel.

HVAC is particularly important in the LNG tank compartments and the gas handling room. As per DNV-RU-SHIP Pt. 6 Chapter 8 Living and Working Conditions [52] all hazardous compartments will be fitted with a ventilation system capable of exchanging the air within the compartment 30 times within an hour (one complete air exchange every two minutes). Each hazardous compartment's ventilation system also must be independent.

A dedicated ventilation shaft was added, which leads directly from the LNG tank spaces to a funnel on the uppermost deck. This ensures boil-off gases do not build up in the tank compartments.

## **18.3 AIR LUBRICATION SYSTEM**

An Air Lubrication System (ALS) will be used to reduce the vessel's fuel consumption further. Based on data collected from a number of ships which utilise ALS, improvements in a vessel's efficiency can be increased by up to 8% [43]. The specifics of the ALS system will be further developed in the next design phase in consultation with a specialist; however, space allocations can be made for this preliminary design. An ALS system requires compressors to release air through outlets on the bottom of the hull. To determine the space necessary for an ALS, vessels with an ALS installed were studied. For a ship matching the size of this RoPax ferry, up to six compressors may be needed. These compressors will be installed on Deck C near the bow to





reduce the trunking lengths required to supply the compressors with sufficient air and to reduce the piping lengths between the compressors and the air release units.

## **19 SAFETY CONSIDERATIONS**

### **19.1 EVACUATION PLAN**

The ferry's evacuation plan will be designed to meet SOLAS regulations such that persons onboard can safely and swiftly escape to the lifeboat and life raft embarkation deck.

Specific evacuation details are discussed in the following sections and are made in reference to SOLAS Regulation Part D – Escape, Regulation 13 – Means of Escape [53].

The following sections summarise key safety requirements that were considered in the general arrangements.

#### **19.1.1** Escape from Control Stations, Accommodation Spaces, and Service Spaces

Following SOLAS regulations as outlined in Part D Section 3 [53], stairways and ladders have been arranged such that they provide a means of escape to the lifeboat and life raft embarkation deck, from passenger and crew accommodation spaces and from spaces where the crew is usually employed, other than machinery spaces (3.1.1).

Doors in way of escape routes, in general, must open in the way of the direction of the escape route except for the following cases (3.1.5):

- Individual cabin doors may open into the cabins (3.1.5.1)
- Doors in vertical emergency escape trunks may open out of the trunk (3.1.5.2)

#### 19.1.2 Means of Escape Requirements for Passenger Ships

Two means of escape are required in spaces below the bulkhead deck. At least one must be independent of watertight doors. Stairways leading up from below the bulkhead deck have to be at least 800mm wide with handrails on both sides (3.2.1.2).

Above the bulkhead deck, there must be at least two means of escape from each main vertical zone or similarly restricted space or group of spaces. At least one space will provide access to a stairway forming a vertical escape.

Stairway enclosures in accommodation and service spaces are required to have direct access from the corridors and be large enough to prevent congestion. Within the stairway enclosures, only public toilets, lockers, and non-combustible material providing storage for non-hazardous safety equipment and open information counters are permitted. Only public spaces, corridors, lifts, public toilets, and open ro-ro spaces to which any passengers can access and external areas are allowed direct access to these stairway enclosures. Small corridors used to separate





an enclosed stairway from galleys or laundries may have direct access to the stairway provided they have a minimum deck area of 4.5m<sup>2</sup> and a width of no less than 900mm.

At least one method of escape will consist of an easily accessible enclosed stairway. The stairway will provide continuous fire shelter from the level of its origin to the appropriate lifeboat and life raft embarkation decks. Protection of access from stairway enclosures to the lifeboat and life raft embarkation areas will be provided either directly or through protected internal routes which have fire integrity (3.2.4.2).

#### **19.1.3** Escape from Machinery Spaces

Where the space is located below the bulkhead deck, two means of escape will consist of either:

- Two sets of steel ladders, as widely separated as possible, leading to doors in the upper part of the space, which are similarly separated, providing access to the appropriate lifeboat and life raft embarkation deck (4.1.1.1). The enclosure is required to have minimum internal dimensions of at least 800mm x 800mm (4.1.1.1)
- One steel ladder leading to a door located in the upper part of the space from which access is provided to the embarkation deck.

When the space is above the bulkhead deck, two means of escape must be as widely separated as possible, with the doors providing access to the appropriate lifeboat and life raft embarkation decks.

#### 19.1.4 Escape From Machinery Control Rooms

Two means of escape are required from a machinery control room located within the machinery space; at least one is to provide continuous fire shelter to a safe area outside the machinery space.

#### **19.1.5** Escape from Ro-Ro Spaces

At least two means of escape must be provided in ro-ro spaces where the crew are usually employed. The escape routes must provide a safe escape to the lifeboat and life-raft embarkation decks and must be located in the fore and aft ends of the ro-ro decks.

#### **19.2 VEHICLE DECK FLOODING**

One important design consideration in RoPax vessels is the vehicle deck. Usually, this deck is completely open, extending from the fore to aft without any transverse subdivisions. This can lead to large areas of flooding, insecure unstable cargo, and free surface effects. To mitigate flood risk, the central trunk acts as a watertight barrier to prevent water from freely sloshing the full beam.





To further mitigate concerns over the flooding of the vehicle decks, flood control doors will be used. There are several types of flood control doors; however, the most common are side and top stowing Jalousie doors, hemicyclic doors, and side rolling doors.

Jalousie doors use slats (or louvres) and tracks, allowing them to be rolled into position. When not being used, side stowing can be stowed alongside the central trunk or side shell to allow for easy loading. Top stowing doors can be stowed on the deckhead, which reduces the free deck height but interferes with loading the least [54]. Side-stowing Jalousie doors can be used above hoistable ramps, but top-stowing doors cannot.

Hemicyclic doors are large gates which pivot out from the central trunk and/or the side shell. They typically do not extend the full height of the deck but are stronger than Jalousie doors [54]. These doors can be used above hoistable ramps.

Side rolling doors consist of a series of gates which telescope outwards from the central trunk or side shell. They can be partially opened or closed to allow for easy loading [54]. These doors can be used above hoistable ramps.

Side-stowing Jalousie flood control doors (shown in Figure 33) were selected for this vessel. Of the three door types, side-stowing Jalousie doors are one of the least obstructive when loading, provide one of the most robust watertight barriers, can be used with hoistable ramps, and are simple to incorporate.



Figure 25: Top stowing Jalousie flood control door [55]

## **20 COST ESTIMATE**

The cost estimate of the vessel was produced based on formulas provided in Ship Design and Construction Volume 1 [20].

The estimated cost of a new commercial vessel is calculated based on several shipyards over decades of data and on gross tonnage per USD. It should be noted that much of the data





provided in this text is outdated. To account for inflation since 1993, a 110% inflation factor was assumed and applied to the total cost.

### **20.1 STRUCTURAL COST**

Figure 26 relates the total structural weight to the total structural cost in order to estimate the vessel's structural cost. Included in this cost is the cost of materials, labour and overhead. From the weight estimate, the structural weight of the vessel was estimated to be 10,160 tonnes. Based on Figure 26, passenger ships cost approximately \$3050/tonne. Correcting for inflation results in a cost of \$6405/tonne in 2023. With a total structural weight of 10,160 tonnes, the total structural weight is estimated at \$65,075,000.



Figure 26: Structural weight versus cost per tonne





## 20.2 OUTFITTING COSTS

Ferries generally have higher than average outfitting costs because of the relatively high specification list. For this preliminary estimate, Figure 27 was used. The outfitting weight of the ferry was estimated to be 7369.3 tonnes. Therefore, this cost per tonne of outfit weight is \$10,000 USD, equivalent to \$21,000 in 2023. This yields a total outfitting cost of \$154,800,000 USD.



Figure 27: Outfit weight versus cost per tonne [19]

## **20.3 TOTAL PROCUREMENT COST**

Applying a 20% margin to account for the age of the data and uncertainties with the added complexity of an LNG and battery propulsion system yields a total cost of \$250,835,000 USD. This aligns with other similarly sized RoPax ferries, such as the Stena Edda (\$205,000,000 USD, built in China, completed in 2021) and Rusadir (\$215,000,000, built in Germany, completed in 2019).

## **20.4 OPERATING COSTS**

The operating costs of the vessel include wages for crew, as well as vessel repairs and maintenance. Other expenses include insurance, fuel costs and provisions.

The cost estimate for fuel was performed for LNG based on an average cost of LNG in March 2023 of \$4.91 USD per Diesel Gallon Equivalent (DGE) [46]. For the annual fuel costs, it was assumed that the vessel would complete 40 trips to PAB per month for eight months and 20 trips to Argentia per month for four months. Table 45 summarises the fuel cost per route.

| Route           | Required Fuel (Gallons) | Cost Per Voyage (USD) | Annual Fuel Cost (USD) |
|-----------------|-------------------------|-----------------------|------------------------|
| Port-Aux-Basque | 7133                    | 35,023                | 11,207,360             |
| Argentia        | 20,807                  | 102,162               | 8,172,960              |
| Total           |                         |                       | 19,380,320             |





Other operating costs can be estimated from Marine Atlantic's 2022 annual report [47]. Although a breakdown of cost per vessel is not outlined in this report, it can be assumed that there is a 15% overhead cost in each cost breakdown as well as a variable cost per vessel.

It was assumed that costs for this vessel would be similar to the Seabridger class (Highlanders and Blue Puttees), given that both this vessel and the Seabridgers have similar passenger capacities, power plants and schedules. Therefore, the salaries, repairs and maintenance, insurance, and provisions would be roughly 25% of the operating costs for 2022. These annual operating costs are provided in Table 46 below.

|                                | -                     |
|--------------------------------|-----------------------|
| Item                           | Cost<br>(\$ thousand) |
| Employee Wages                 |                       |
| Employee wages                 | 14,232                |
| <b>Repairs and Maintenance</b> | 1,840                 |
| Insurance                      | 1,506                 |
| Provisions                     | 5,543                 |
| Fuel                           | 19,380                |
| Total                          | 42,501                |

## **21 ENERGY EFFICIENCY DESIGN INDEX**

The Energy Efficiency Design Index (EEDI) is a measure of a vessel's energy efficiency. It takes into account the ship's emissions, capacity, and speed. The lower a ship's EEDI, the more energy efficient the design is and the lower its negative impact on the environment [48]. The EEDI of a vessel is determined using the equation shown below:



Figure 28: EEDI Formula [49]





The vessel is required to attain an EEDI less than the reference EEDI, which is calculated as:

Reference 
$$EEDI = a * b^{-c}$$

Where a and c are factors which are specific to passenger ferries, and b is the deadweight capacity of the vessel in tonnes. The reference EEDI for this vessel is:

*Reference EEDI* = 
$$752.16 * 4355^{-0.381}$$

*Reference* EEDI = 29.9

The attained EEDI calculation was completed for both LNG and Diesel, as shown in Table 47.

| Description                                  | Symbol               | Value   | Description                           | Symbol               | Value    |
|----------------------------------------------|----------------------|---------|---------------------------------------|----------------------|----------|
| Length Between<br>Perpendiculars (m)         | $L_{pp}$             | 188     | Service Speed (knots)                 | $V_{\text{ref}}$     | 14       |
| Beam (m)                                     | Bs                   | 28      | Deadweight (Tonnes)                   | DWT                  | 4355     |
| Draft (m)                                    | Ts                   | 6.7     | MCR Rating of Main<br>Engines (kW)    | MCR                  | 6000     |
| Volumetric<br>Displacement (m <sup>3</sup> ) | $\bigtriangledown$   | 23978.5 | Ice Correction Factor                 | $\mathbf{f}_{i}$     | 0.073681 |
| Rated Output of Main<br>Engines (kW)         | M <sub>PP</sub>      | 16200   | Froude Number                         | fn                   | 0.167693 |
| Motor Efficiency                             | n <sub>pti</sub>     | 0.945   | Correction Exponent                   | α                    | 2.5      |
| <b>Generator Efficiency</b>                  | n <sub>Gen</sub>     | 0.97    | Correction Exponent                   | β                    | 0.75     |
| Hotel Load (kW)                              | $H_{load}$           | 3405    | Correction Exponent                   | γ                    | 0.75     |
| Specific Fuel<br>Consumption (g/kWh)         | SFC_AE               | 179     | Correction Exponent                   | δ                    | 1        |
| Gross Registered<br>Tonnage                  | GRT                  | 43200   | Correction Factor for<br>Ro-Ro Vessel | f <sub>roro</sub>    | 1.092526 |
| Shaft Power (kW)                             | PPTI                 | 17673.0 | Correction Factor for<br>Ro-Ro Vessel | $f_{roro}$           | 1        |
| Auxilliary Engine<br>Power (kW)              | P_AE                 | 3944    | Correction Factor for<br>Ro-Ro Vessel | $f_{c\_ropax}$       | 2.06799  |
| Fuel Factor                                  | C <sub>f</sub> (MDO) | 3.206   | Fuel Factor                           | C <sub>f</sub> (LNG) | 2.75     |
| EEDI (MDO)                                   |                      | 18.48   | EEDI (LNG)                            |                      | 15.84    |
| Pass Margin                                  |                      | 38%     | Pass Margin                           |                      | 47%      |

Table 47: Attainted EEDI Values for LNG and MDO

This vessel satisfies the EEDI requirements in both cases by a comfortable margin.





## 22 RISK ASSESSMENT AND RECOMMENDATIONS FOR FUTURE WORK

The concept for Leif Ericson's replacement outlined in this report achieves the goal set out in the statement of requirements to create a notional RoPax ferry design that would provide a safe, comfortable, and reliable service between Newfoundland and Nova Scotia. Key aspects of the design were developed, such as a bespoke hull form, general arrangements, and structural arrangements. Various aspects of the concept were also assessed, such as seakeeping qualities, resistance predictions, and stability.

This RoPax ferry is a large, expensive, and complex ship which Nova Scotia and Newfoundland will rely on for decades to come. It is, therefore, critical that, as the design matures, key aspects are reviewed to ensure the as-built ship meets all the requirements specified by the owners. Risks which could impact the ferry's compliance with the owner's requirements are discussed in the sections that follow.

### 22.1 STABILITY

As discussed previously, this preliminary design fails to meet the applicable damaged stability criteria for two cases involving the flooding of the LNG tank compartment and an adjoining compartment. This issue must be addressed in the subsequent design stage by altering the bulkhead placement or adding a longitudinal bulkhead in the failing compartment. The vessel passes the necessary stability criteria by a reasonable margin for all other cases. Intact and damaged stability should be reassessed at each stage of design as the weight estimate, and arrangements become more refined.

#### 22.2 RESISTANCE AND POWERING

The resistance predictions made using the Holtrop-Mennen method should be verified early in the design through model tests or CFD analyses. The hotel load estimate should also be verified by compiling a detailed list of all electrical consumers and their respective loads. This will ensure that the power plant is appropriately sized for the energy demands of the vessel.

Although the routes are relatively short, it may be worthwhile to perform voyage scenario simulations, such as MARIN's Gulliver simulation [50], to validate the maximum speed of the vessel needed to make up for delays. A reduction in the maximum speed by 1 - 2 knots would reduce the required power by 2000 – 4000 kW. Smaller gensets could then be used, reducing weight, cost, and fuel consumption.

#### 22.3 MANOEUVRABILITY

One of the drivers for the decision to use podded propulsors was to ensure the vessel would be capable of manoeuvring in Port aux Basques in extremely windy conditions. Tests should therefore be carried out to ensure that the pods and bow thrusters selected would provide the





power necessary to safely manoeuvre the ship into its berth in 40kts of wind. If the ship handles poorly in such conditions, the ferry service would experience considerable delays, or crossings may be cancelled. The size of the bow thruster compartment would allow for a third bow thruster to be easily added should the tests indicate the vessel manoeuvres poorly.

## 22.4 SEAKEEPING

The vessel meets the applicable NORDFORSK (1987) seakeeping limits. The seakeeping analysis completed for this preliminary design did not include bilge keels or fin stabilizers. This is something that should be accounted for in later stages of design to aid with the selection of an appropriate active fin stabilizer. Model tests should also be performed to confirm the results of the seakeeping analysis.

## 22.5 WEIGHT

Weight growth during the design and construction phase was accounted for by including a substantial margin in the weight estimates. However, the number of unique design features, such as pods, LNG fuel systems, batteries, and ice strengthening, may reduce the available margin. As the design becomes more detailed, it will be important to develop a method of weight tracking to reduce the risk of the vessel being delivered overweight and consequently having a lower deadweight capacity.

#### **22.6 ARRANGEMENTS**

Detailed equipment sizing estimates should be obtained in consultation with the equipment suppliers. In particular, the space required for the HVAC equipment should be further studied to ensure there is currently enough dedicated HVAC space in the General Arrangement drawings to adequately service all decks. Spaces have been left unallocated throughout the vessel to reduce the risk of having insufficient space for equipment.

## 22.7 FUNDING

Marine Atlantic, being a Crown Corporation, is subsidised by the Government of Canada. The funding to build the ferry would therefore be provided by the government. According to Marine Atlantic's Corporate Plan Summary, the acquisition process would begin sometime in 2025/26 [51], which coincides with the 45<sup>th</sup> Federal Election. The budget for the vessel could therefore change significantly. This may result in the need for alterations to the vessel to reduce costs. This was accounted for in the design by including a number of unallocated areas near the machinery spaces, allowing for flexibility in the propulsion arrangements. With several minor changes, the podded propulsors and gensets could be replaced with more traditional and less expensive shafts coupled to medium-speed diesel engines, and the batteries could be removed. If more drastic changes are needed, having a parallel midbody would allow the vessel to be shortened by up to 10m and still have a 3000 lane meter vehicle capacity.




# **23 REFERENCES**

- [1] Marine Atlantic, "Marine Atlantic Reports," 2020. [Online]. Available: https://www.marineatlantic.ca/about-us/corporate-information/reports. [Accessed 14 January 2023].
- [2] S. Leamon, Interviewee, *Traffic Information for Vessel Design*. [Interview]. 18 January 2023.
- [3] Jacques Whitford, "Sydney Basin Sea Final Report," Jacques Whitford, 2007.
- [4] Environment Canada, "Environment Canada Ice Archives," Environment Canada, 2015.
  [Online]. Available: https://iceweb1.cis.ec.gc.ca/Archive/page1.xhtml?lang=en. [Accessed 16 January 2023].
- [5] Transport Canada, "Marine Occupational Health and Safety," Government of Canada, 13 February 2023. [Online]. Available: https://tc.canada.ca/en/marinetransportation/seafarer-certification/marine-occupational-health-safety. [Accessed 7 March 2023].
- [6] Interreg, July 2020. [Online]. Available: https://www.nweurope.eu/media/14694/210225\_h2ships\_t232\_compassesmtaltfuels-02.pdf. [Accessed 23 February 2023].
- [7] ABB, "Azipod Electric Propulsion," ABB, 2023. [Online]. Available: https://new.abb.com/marine/systems-and-solutions/azipod#compact. [Accessed 1 March 2023].
- [8] Marine Atlantic, "Fleet Renewal Working to Get the Right Vessels for our Service," Oceanic, 10 March 2015. [Online]. Available: https://www.marineatlantic.ca/journey/fleet-renewal-working-get-right-vessels-ourservice?fbclid=lwAR2p6IFKfnQYgbJJJx8g4AVP5aC6yH\_64o7XkVKuRuPfFiSN8OqKxPISXRk. [Accessed 14 March 2023].
- [9] International Maritime Organization, INTERNATIONAL CODE FOR SHIPS OPERATING IN POLAR WATERS.
- [10] DNV, "Part 6: Additional Class Notations, Chapter 6: Cold Climate," July 2022. [Online]. Available: standards.dnv.com/explorer. [Accessed 21 February 2023].
- [11] DNV, "Part 6: Additional Class Notations, Chapter 6: Cold Climate," DNV, July 2022.





Available:

[Online].

https://standards.dnv.com/explorer/document/EB47511FB6F14F7F80E4F98C560A3B98/ 27. [Accessed 12 March 2023].

- [12] DNV, "Part 2: Materials and Welding," July 2022. [Online]. Available: standards.dnv.com/explorer. [Accessed 20 February 2023].
- [13] DNV, "Part 3: Hull," July 2021. [Online]. Available: standards.dnv.com/explorer. [Accessed 20 February 2023].
- [14] DNV, "Part 5: Ship Types, Chapter 3: RO/RO Ships," July 2021. [Online]. Available: stanards.dnv.com/explorer. [Accessed 20 February 2023].
- [15] DNV, "Part 5: Ship Types, Chapter 4: Passenger Ships," July 2021. [Online]. Available: standards.dnv.com/explorer. [Accessed 20 February 2023].
- [16] DNV, "Part 3: Hull, Chapter 3: Structural Design Principles," July 2022. [Online]. Available: https://standards.dnv.com/explorer/document/7AD7E71890A742BCA891FD567076D75C /23. [Accessed 10 March 2023].
- [17] DNV, "Part 3: Hull, Chapter 6: Local Hull Scantling," July 2022. [Online]. Available: https://standards.dnv.com/explorer/document/213DA1E84A5F4FB6ADE7699F611F7E16/ 23. [Accessed 9 March 2023].
- [18] DNV, "Part 3: Hull, Chapter 10: Special Requirements," July 2022. [Online]. Available: https://standards.dnv.com/explorer/document/12A42EEA529147D8B06F9FA7B4B83D39 /21. [Accessed 9 March 2023].
- [19] International Group of Authorities, "Ship Design and Construction," The Society of Naval Architects and Marine Engineers, Jersey City, 2003.
- [20] Task Force on Vehicle Weights and Dimensions Policy , "Heavy Truck Weight and Dimension Limits," 2019.
- [21] Environmental Protection Agency, "The 2020 EPA Automotive Trends Report -Greenhouse Gas Emissions, Fuel Economy, and Technology since 1975," 2020.
- [22] Government of Newfoundland and Labrador, *Vehicles Regulations, 2001 (Amendment),* St. John's, 2014.
- [23] Government of Nova Scotia, Weights and Dimensions of Vehicles Regulations, Halifax, 2020.





- [24] S. Tan, "Seakeeping Considerations in," 1995.
- [25] National Centers for Environmental Information, "About WMO Code," 2014. [Online]. Available: https://www.nodc.noaa.gov/gtspp/document/codetbls/wmocodes/table3700.html.

[Accessed 13 January 2023].

- [26] National Weather Service, "Estimaing Wind Speed and Sea State," [Online]. Available: https://www.weather.gov/pqr/beaufort. [Accessed 11 March 2023].
- [27] American Bureau of Shipping, *SELECTING DESIGN WAVE BY LONG TERM*, Houston, 2016.
- [28] Wartsila, "Excellent Thrust Performance for Efficient Operations," May 2022. [Online]. Available: https://cdn.wartsila.com/docs/default-source/product-files/gearspropulsors/thrusters/wartsila-transverse-thrusters-brochure.pdf. [Accessed 11 March 2023].
- [29] Wartsila, "Bow Thruster," Wartsila, 2023. [Online]. Available: https://www.wartsila.com/encyclopedia/term/bowthruster?fbclid=IwAR2O5\_DRWcDMldugNMHuVOG4RJ5i6fh3jx9Ez8LuZzDa9SNm860SfUP L73s. [Accessed 11 March 2023].
- [30] Transport Canada, "TP 7301 E -Stability, Subdivision, and Load Line Standards," Transport Canada, Ottawa, 1991.
- [31] Transport Canada, "TP 10943 E Passenger Vessel Operations and Damaged Stability Standards (Non-Convention Vessels)," Her Majesty the Queen in Right of Canada (Represented by the Minister of Transport), Ottawa, 1991.
- [32] DNV, "Part 3: Hull, Chapter 2: General Arrangement Design," DNV, July 2022. [Online]. Available: https://standards.dnv.com/explorer/document/AD0219FD13714145A823E5B55122F3C1 /21. [Accessed 23 February 2023].
- [33] IMO, "Summary of SOLAS Chapter II-2," IMO, 1 July 2002. [Online]. Available: https://www.imo.org/en/OurWork/Safety/Pages/summaryofsolaschapterii-2default.aspx#:~:text=Regulation%2013%20%2D%20Means%20of%20escape,lifeboat%20a nd%20liferaft%20embarkation%20deck.&text=Regulation%2014%20%2D%20Operational %20readiness%20and,the%20ship%20. [Accessed 8 March 2023].
- [34] DNV, "Part 3: Hull, Chapter 12: Openings and Closing Appliances," July 2022. [Online]. Available: https://standards.dnv.com/explorer/document/16E0A1890EC74470B7A80AC0D9BB09DB





/22. [Accessed 15 February 2023].

- [35] MACGREGOR, "Movable Ramps/ Hoistable," 2023. [Online]. Available: https://www.macgregor.com/Products/products/ramps/movable-ramps--hoistable/. [Accessed 15 February 2023].
- [36] Viking Life-Saving Equipment, "Viking Norsafe Maxima-120 MKI," Viking Life-Saving Equipment, [Online]. Available: https://www.viking-life.com/shop/boats-and-davits/-boats/conventional-lifeboats/p/B00101019/#full-description. [Accessed 13 March 2023].
- [37] Viking Life-Saving Equipment, "Narwhal FRB-700," Viking Life-Saving Equipment, [Online].
  Available: https://www.viking-life.com/shop/boats-and-davits/-boats/fast-rescueboats/p/1071940/#full-description. [Accessed 11 March 2023].
- [38] Viking Life-Saving Equipment, "Liferaft VIKING, 150DKS," Viking Life-Saving Equipment, [Online]. Available: https://www.viking-life.com/shop/liferaft-andaccessories/liferafts/throw-overboard-self-righting/p/L150DS/#full-description. [Accessed 11 March 2023].
- [39] Canadian Transportation Agency, Ferry Accessibility for Persons with Disabilities: Code of Practice.
- [40] I. M. Association, "Part C Suppression of Fire, Regulation 10: Firefighting," Classification Society Group Limitied, 2022. [Online]. Available: https://www.imorules.com/GUID-04259239-E868-4ABF-8BB9-B2BE5AB52C93.html. [Accessed 3 March 2023].
- [41] Transport Canada, "Part 1 Definitions," [Online]. Available: https://tc.canada.ca/en/marine-transportation/marine-safety/part-1-definitions. [Accessed 20 March 2023].
- [42] DNV, "DNV Part 6: Additional Class Notations, Chapter 8: Living and Working Conditions,"
  DNV, July 2021. [Online]. Available: https://standards.dnv.com/explorer/document/00DAE76B692E4ECFA328A8A8336A0D85
   /20. [Accessed 9 March 2021].
- [43] D. T. T. P. J. J. Noah Silberschmidt, "Air Lubrication Performance Verification and," 2016.
- [44] MACGREGOR, RORO Flood Control Doors Technical Information.
- [45] MACGREGOR, "Flood Control Doors," [Online]. Available: https://www.macgregor.com/Products/products/doors/flood-control-doors/. [Accessed 21 March 2023].





- [46] U.S. Department of Energy, "Alternative Fuel Price Report," January 2023. [Online]. Available: extension://efaidnbmnnnibpcajpcglclefindmkaj/https://afdc.energy.gov/files/u/publicati on/alternative\_fuel\_price\_report\_january\_2023.pdf. [Accessed 20 March 2023].
- [47] Marine Atlantic, "Annual Report 2021-2022," [Online]. Available: chromeextension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.marineatlantic.ca/sites/def ault/files/2022-10/Annual-Report-2021-2022.pdf. [Accessed 17 March 2023].
- [48] MAN, "EEDI," MAN Energy Solutions, Augsburg.
- [49] "Procedure for Calculation and Verification of the Energy Efficiency Design Index," 2016.
- [50] J. Wisse, "VOYAGE SCENARIO SIMULATION WITH GULLIVER," MARIN, 2019.
- [51] Marine Atlantic, "Corporate Plan 2022/23 2026/27," [Online]. Available: https://www.marineatlantic.ca/sites/default/files/2022-10/Corporate-Plan-Summary-2022-2023-2026-2027.pdf.





# **APPENDIX A – STATEMENT OF REQUIREMENTS**





## 1.0 PHYSICAL DESIGN CONSTRAINTS

The vessel will operate out of the Marine Atlantic terminals in Port aux Basques, NL, Argentia, NL, and North Sydney, NS. Its dimensions are therefore limited by the size restrictions of each terminal.

The limiting parameters are as follows:

**Length:** The length of the vessel must be less than 205m so that it may manoeuvre in the Port aux Basques turning basin.

**Draft:** All three harbours are dredged to a minimum depth of 7m. Therefore, the design draft must be less than 7m.

**Beam:** The beam can be no greater than 28m to allow the vessel to integrate with existing boarding infrastructure.

#### 1.1 OPERATIONAL REQUIREMENTS

#### 1.1.1 Speed

The new vessel must be able to maintain Marine Atlantic's existing schedule. It must therefore have sufficient speed to complete the 96nm North Sydney to Port aux Basques route in less than seven hours and the 280nm North Sydney to Argentia route in less than seventeen hours.

#### 1.1.2 Endurance

This vessel must carry provisions for all crew and passengers sufficient for the voyage lengths the ferry will undertake. This vessel must also have the capability to carry enough provisions to cross the Atlantic Ocean, with crew only on board.

#### 1.1.3 Seakeeping

The vessel must undertake voyages in Sea State 6 conditions as defined by the World Meteorological Organizations Sea State [5] code while complying with NORDFORSK (1987) seakeeping limits.

#### 1.1.4 Icebreaking Capability

The vessel must be capable of travelling through any ice that may accumulate on the route between Nova Scotia and Newfoundland. It will therefore be designed to meet the appropriate ice class for the area of operation.

#### 1.1.5 Design Life

The vessel must have a service life of 40 years with regularly scheduled drydocking periods every five years.





#### 1.1.6 Maneuverability

The vessel must manoeuvre into and out of the three Marine Atlantic terminals unaided by tugs.

#### 1.1.7 Passenger and Vehicle Capacity

The vessel must accommodate 1100 passengers and crew and have 3000 lane meters for passenger and commercial vehicle traffic [2].

### 1.2 ACCOMMODATIONS AND PASSENGER FACILITIES

#### 1.2.1 Passenger Accommodations

The vessel must have enough cabins to accommodate at least 40% of the passengers at double occupancy [2]. Each cabin must have a private head. The ferry must also have a gym, a shop to purchase snacks and travel items, a buffet-style cafeteria, and two lounges, one of which will be designated as a "quiet" lounge.

#### 1.2.2 Crew Accommodations

There must be sufficient cabins for all crew. Senior officers must have their own cabins near the bridge, and there must be enough single or double-occupancy cabins with private heads to accommodate all other crew members. The ferry must have a crew mess and lounge.

#### 1.2.3 Pet Facilities

Pet-friendly cabins should account for 10% of passenger cabins to accommodate passengers travelling with pets. There must also be kennel facilities with room for 20 large kennels.

### **1.3** Special Considerations

#### 1.3.1 Vehicle Decks

Vehicle decks must include electrical connection points for reefer units. There must also be an appropriate number of electric vehicle charging stations for passenger vehicles and the capability to add more as required.

#### **1.3.2** Environmental Concerns

The vessel must be designed to have a minimal environmental impact. Therefore, measures must be taken to minimize underwater noise pollution and reduce Greenhouse Gas (GHG) Emissions.

#### **1.3.3 Hazardous Cargo**

The vessel must have an open deck for vehicles containing hazardous cargo to be stowed.

#### 1.3.4 Fire Precautions

Vehicle decks must have a fire suppression system capable of extinguishing lithium fires that may originate from an electric vehicle.





### **1.3.5** Loading Arrangements

The ferry must be capable of loading and offloading vehicles from the bow and stern. It must also have the capability for two-level loading and offloading.

### 1.4 REGULATORY REQUIREMENTS

All Marine Atlantic vessels are classed with DNV. The new vessel will, therefore, also comply with DNV's rules and regulations for classification.

Additionally, the vessel must be designed in accordance with the following codes and regulations as they pertain to passenger RoPax vessels:

- International Maritime Organization (IMO)
- Transport Canada (TC)
- International Convention for the Safety of Life at Sea (SOLAS)
- International Load Line Convention (LLC)
- International Convention for the Prevention of Pollution from Ships (MARPOL)
- International Maritime Dangerous Goods (IMDG) Code
- Canadian Transportation Agency's Ferry Accessibility for Persons with Disability Code of Practice





# APPENDIX B – POLARIS ICE CLASS SELECTION

|            | ICE FREE | NEW ICE | GREY ICE | GREY<br>WHITE<br>ICE | THIN FIRST<br>YEAR 1ST<br>STAGE | THICK FIRST<br>YEAR 2ND<br>STAGE | MEDIUM FIRST<br>YEAR 2ND STAGE | MEDIUM FIRST<br>YEAR 2ND<br>STAGE | THICK FIRST<br>YEAR | SECOND YEAR | MULTI YEAR | HEAVY MULTI<br>YEAR |
|------------|----------|---------|----------|----------------------|---------------------------------|----------------------------------|--------------------------------|-----------------------------------|---------------------|-------------|------------|---------------------|
| 1AS        | 3        | 2       | 2        | 2                    | 2                               | 1                                | 0                              | -1                                | -2                  | -3          | -4         | -4                  |
| 1A         | 3        | 2       | 2        | 2                    | 1                               | 0                                | -1                             | -2                                | -3                  | -4          | -5         | -5                  |
| 1B         | 3        | 2       | 2        | 1                    | 0                               | -1                               | -2                             | -3                                | -4                  | -5          | -6         | -6                  |
| 1C         | 3        | 2       | 1        | 0                    | -1                              | -2                               | -3                             | -4                                | -5                  | -6          | -7         | -8                  |
| Egg code # | 0        | 1       | 4        | 5                    | 7                               | 8                                | 1*                             | 4*                                | 7*                  | 8*          | 9*         | 9*                  |

| Instances<br>where ice<br>forms intrudes | Letter  | Concentration     | 2nd row Egg Code |        | 3rd row Egg Code |         | Corresponding Class Value |       | 1AS   | Corresponding Class Value |        | 1A      | Corresponding Class Value |       | is Value | 1B  | Corresp | onding Class V | 'alue | 1C  |       |       |        |          |
|------------------------------------------|---------|-------------------|------------------|--------|------------------|---------|---------------------------|-------|-------|---------------------------|--------|---------|---------------------------|-------|----------|-----|---------|----------------|-------|-----|-------|-------|--------|----------|
| on route                                 |         |                   | 1 col            | 2 col  | 3 col            | 1 col   | 2 col                     | 3 col | 1 col | 2 col                     | 3 col  | RIO     | 1 col                     | 2 col | 3 col    | RIO | 1 col   | 2 col          | 3 col | RIO | 1 col | 2 col | 3 col  | RIO      |
| 2015-02-09                               | M       | 9-10/10           | 1                | 5      | 4                | 7       | 5                         | 4     | 2     | 2                         | 2      | 20      | 1                         | 2     | 2        | 19  | 0       | 1              | 2     | 13  | -1    | 0     | 1      | 3        |
| 2015-02-09                               | Ŭ       | 9-10/10           | 2                | 2      | 1                | 5       | 4                         | 1     | 2     | 2                         | 2      | 10      | 2                         | 2     | 2        | 10  | 1       | 2              | 2     | 8   | 0     | 1     | 2      | 4        |
| 2015-02-16                               | 0       | 9-10/11           | 1                | 5      | 2                | 7       | 5                         | 4     | 2     | 2                         | 2      | 16      | 1                         | 2     | 2        | 15  | 0       | 1              | 2     | 9   | -1    | 0     | 1      | 1        |
| 2015-02-16                               | х       | 4-6/10            | 2                | 1      | 1                | 5       | 4                         | 1     | 2     | 2                         | 2      | 8       | 2                         | 2     | 2        | 8   | 1       | 2              | 2     | 6   | 0     | 1     | 2      | 3        |
| 2015-02-23                               | CC      | 4-6/10            | 2                | 1      | 1                | 5       | 4                         | 1     | 2     | 2                         | 2      | 8       | 2                         | 2     | 2        | 8   | 1       | 2              | 2     | 6   | 0     | 1     | 2      | 3        |
| 2015-02-23                               | 00      | 9-10/10           | 3                | 4      | 2                | 7       | 5                         | 4     | 2     | 2                         | 2      | 8<br>18 | 1                         | 2     | 2        | 15  | 0       | 1              | 2     | 4   | -1    | 0     | 1      | -1       |
| 2015-02-23                               | L       | 9-10/10           | 4                | 4      | 2                | 5       | 4                         | 1     | 2     | 2                         | 2      | 20      | 2                         | 2     | 2        | 20  | 1       | 2              | 2     | 16  | 0     | 1     | 2      | 8        |
| 2015-03-02                               | нн      | 1-3/10            | 0                | 0      | 0                | 0       | 7                         | 0     | 3     | 2                         | 3      | 0       | 3                         | 1     | 3        | 0   | 3       | 0              | 3     | 0   | 3     | -1    | 3      | 0        |
| 2015-03-02                               | Q       | 4-6/10            | 6                | 3      | 0                | 4       | 1                         | 0     | 2     | 2                         | 3      | 18      | 2                         | 2     | 3        | 18  | 2       | 2              | 3     | 18  | 1     | 2     | 3      | 12       |
| 2015-03-02                               | V       | 9-10/10           | 1                | 4      | 2                | 1       | 7                         | 5     | 2     | 2                         | 2      | 14      | 2                         | 1     | 2        | 10  | 2       | 0              | 1     | 4   | -1    | -1    | 0      | -2       |
| 2015-03-02                               | M       | 9-10/10           | 2                | 7      | 1                | 1*      | 7                         | 5     | 0     | 2                         | 2      | 16      | -1                        | 1     | 2        | 7   | -2      | 0              | 1     | -3  | -3    | -1    | 0      | -13      |
| 2015-03-09                               | s       | 7-8/10            | 2                | 6      | 0                | 4       | 1                         | 0     | 2     | 2                         | 3      | 16      | 2                         | 2     | 3        | 16  | 2       | 2              | 3     | 16  | 1     | 2     | 3      | 14       |
| 2015-03-09                               | н       | 9-10/10           | 4                | 5      | 1                | 1*      | 7                         | 5     | 0     | 2                         | 2      | 12      | -1                        | 1     | 2        | 3   | -2      | 0              | 1     | -7  | -3    | -1    | 0      | -17      |
| 2015-03-09                               | Q       | 9-10/10           | 1                | 6      | 1                | 1*      | 7                         | 5     | 0     | 2                         | 2      | 14      | -1                        | 1     | 2        | 7   | -2      | 0              | 1     | -1  | -3    | -1    | 0      | -9       |
| 2015-03-09                               | N       | 4-6/10<br>9-10/10 | 3                | 2      | 2                | 4       | 5                         | 0     | 2     | 2                         | 3      | 10      | 2                         | -1    | 3        | 0   | 2       | 1              | 3     | -8  | -1    | -3    | -1     | -3       |
| 2015-03-16                               | L       | 9-10/10           | 3                | 6      | 1                | 1*      | 7                         | 5     | 0     | 2                         | 2      | 14      | -1                        | 1     | 2        | 5   | -2      | 0              | 1     | -5  | -3    | -1    | ō      | -15      |
| 2015-03-16                               | х       | 4-6/10            | 3                | 2      | 0                | 7       | 5                         | 0     | 2     | 2                         | 3      | 10      | 1                         | 2     | 3        | 7   | 0       | 1              | 3     | 2   | -1    | 0     | 3      | -3       |
| 2015-03-16                               | V       | 7-8/10            | 2                | 4      | 2                | 1*      | 7                         | 5     | 0     | 2                         | 2      | 12      | -1                        | 1     | 2        | 6   | -2      | 0              | 1     | -2  | -3    | -1    | 0      | -10      |
| 2015-03-23                               | w       | 4-6/10            | 0                | 0      | 0                | 1       | 0                         | 0     | 2     | 3                         | 3      | 0       | 2                         | 3     | 3        | 0   | 2       | 3              | 3     | 0   | 2     | 3     | 3      | 0        |
| 2015-03-23                               | G       | 9-10/10           | 3                | 6      | 1                | 4<br>1* | 7                         | 5     | 0     | 2                         | 2      | °<br>14 | -1                        | 1     | 2        | 5   | -2      | 0              | 1     | -5  | -3    | -1    | 0      | -10      |
| 2015-03-23                               | DD      | 1-3/10            | 1                | 2      | 0                | 0       | 1*                        | 7     | 3     | 0                         | 2      | 3       | 3                         | -1    | 1        | 1   | 3       | -2             | 0     | -1  | 3     | -3    | -1     | -3       |
| 2015-03-23                               | S       | 7-8/10            | 1                | 5      | 1                | 1*      | 7                         | 5     | 0     | 2                         | 2      | 12      | -1                        | 1     | 2        | 6   | -2      | 0              | 1     | -1  | -3    | -1    | 0      | -8       |
| 2015-03-30                               | J       | 9-10/10           | 2                | 2      | 5                | 4       | 1*                        | 7     | 2     | 0                         | 2      | 14      | 2                         | -1    | 1        | 7   | 2       | -2             | 0     | 0   | 1     | -3    | -1     | -9       |
| 2015-03-30                               | v<br>DD | 4-6/10            | 1                | 1      | 3                | 4       | 1*                        | 7     | 2     | 0                         | 2      | 8       | 2                         | -1    | 1        | 4   | 2       | -2             | 0     | 0   | 1     | -3    | -1     | -5       |
| 2015-04-06                               | s       | 7-8/10            | 3                | 4      | 1                | 1*      | 7                         | 5     | 0     | 2                         | 2      | 10      | -1                        | 1     | 2        | 3   | -2      | 0              | 1     | -5  | -3    | -1    | ō      | -13      |
| 2015-04-06                               | L       | 9-10/10           | 3                | 5      | 1                | 1*      | 7                         | 5     | 0     | 2                         | 2      | 12      | -1                        | 1     | 2        | 4   | -2      | 0              | 1     | -5  | -3    | -1    | 0      | -14      |
| 2015-04-06                               | FF      | 1-3/10            | 2                | 1      | 0                | 1*      | 7                         | 0     | 0     | 2                         | 3      | 2       | -1                        | 1     | 3        | -1  | -2      | 0              | 3     | -4  | -3    | -1    | 3      | -7       |
| 2015-04-13                               | G       | 9-10/10           | 3                | 6<br>F | 1                | 1*      | 7                         | 5     | 0     | 2                         | 2      | 14      | -1                        | 1     | 2        | 5   | -2      | 0              | 1     | -5  | -3    | -1    | 0      | -15      |
| 2015-04-13                               | GG      | 4-6/10            | 2                | 2      | 0                | 1*      | 7                         | 0     | 0     | 2                         | 3      | 4       | -1                        | 1     | 3        | 0   | -2      | 0              | 3     | -4  | -3    | -1    | 3      | -8<br>-8 |
| 2015-04-20                               | FF      | 1-3/10            | 1                | 2      | 0                | 1*      | 7                         | 0     | 0     | 2                         | 3      | 4       | -1                        | 1     | 3        | 1   | -2      | 0              | 3     | -2  | -3    | -1    | 3      | -5       |
| 2015-04-20                               | х       | 7-8/10            | 1                | 5      | 1                | 1*      | 7                         | 5     | 0     | 2                         | 2      | 12      | -1                        | 1     | 2        | 6   | -2      | 0              | 1     | -1  | -3    | -1    | 0      | -8       |
| 2015-04-20                               | P       | 9-10/10           | 2                | 6      | 1                | 1*      | 7                         | 5     | 0     | 2                         | 2      | 14      | -1                        | 1     | 2        | 6   | -2      | 0              | 1     | -3  | -3    | -1    | 0      | -12      |
| 2015-04-20                               | ĸ       | 9-10/10           | 2                | 5      | 0                | /       | 5                         | 0     | 2     | 2                         | 3      | 18      | 3                         | -1    | 3        | 16  | 3       | 1              | 3     | -1  | -1    | -3    | -1     | -2       |
| 2015-04-27                               | Ŵ       | 1-3/10            | 1                | 2      | 0                | 0       | 1*                        | 7     | 3     | 0                         | 2      | 3       | 3                         | -1    | 1        | 1   | 3       | -2             | 0     | -1  | 3     | -3    | -1     | -3       |
| 2015-05-04                               | E       | 9-10/10           | 1                | 4      | 5                | 4       | 1*                        | 7     | 2     | 0                         | 2      | 12      | 2                         | -1    | 1        | 3   | 2       | -2             | 0     | -6  | 1     | -3    | -1     | -16      |
| 2016-03-28                               | L       | 1-3/10            | 6                | 3      | 0                | 4       | 1                         | 0     | 2     | 2                         | 3      | 18      | 2                         | 2     | 3        | 18  | 2       | 2              | 3     | 18  | 1     | 2     | 3      | 12       |
| 2017-03-06                               | GG      | 1-3/10            | 1                | 1      | 0                | 7       | 5                         | 0     | 2     | 2                         | 3      | 4       | 1                         | 2     | 3        | 3   | 0       | 1              | 3     | 1   | -1    | 0     | 3      | -1       |
| 2017-03-17                               | 0       | 9-10/10           | 1                | 3      | 3                | 4       | 5                         | 4     | 2     | 2                         | 2      | 10      | 1                         | 2     | 2        | 13  | 0       | 1              | 2     | 9   | -1    | 0     | 1      | 14       |
| 2017-03-17                               | AA      | 1-3/10            | 1                | 1      | 1                | 7       | 4                         | 1     | 2     | 2                         | 2      | 6       | 1                         | 2     | 2        | 5   | 0       | 2              | 2     | 4   | -1    | 1     | 2      | 2        |
| 2017-03-20                               | нн      | 4-6/10            | 1                | 2      | 1                | 7       | 5                         | 4     | 2     | 2                         | 2      | 8       | 1                         | 2     | 2        | 7   | 0       | 1              | 2     | 4   | -1    | 0     | 1      | 0        |
| 2017-03-20                               | AA      | 7-8/10            | 5                | 2      | 0                | 4       | 1                         | 0     | 2     | 2                         | 3      | 14      | 2                         | 2     | 3        | 14  | 2       | 2              | 3     | 14  | 1     | 2     | 3      | 9        |
| 2017-03-20                               | FF      | 4-6/10            | 3                | 2      | 1                | 4       | 1                         | 4     | 2     | 2                         | 3      | 10      | 2                         | 2     | 3        | 10  | 2       | 2              | 3     | 10  | -1    | 2     | 3      | 7        |
| 2017-03-27                               | x       | 7-8/10            | 3                | 3      | 1                | 7       | 5                         | 4     | 2     | 2                         | 2      | 14      | 1                         | 2     | 2        | 11  | 0       | 1              | 2     | 5   | -1    | 0     | 1      | -2       |
| 2017-04-10                               | х       | 1-3/10            | 0                | 0      | 0                | 7       | 0                         | 0     | 2     | 3                         | 3      | 0       | 1                         | 3     | 3        | 0   | 0       | 3              | 3     | 0   | -1    | 3     | 3      | 0        |
| 2018-01-29                               | Y       | 7-8/10            | 2                | 5      | 1                | 5       | 4                         | 1     | 2     | 2                         | 2      | 16      | 2                         | 2     | 2        | 16  | 1       | 2              | 2     | 14  | 0     | 1     | 2      | 7        |
| 2018-02-05                               | X       | 7-8/10            | 1                | 5      | 2                | 5       | 4                         | 1     | 2     | 2                         | 2      | 16      | 2                         | 2     | 2        | 16  | 1       | 2              | 2     | 15  | 0     | 1     | 2      | 9        |
| 2018-02-12                               | BB      | 1-3/10            | 1                | 5<br>1 | 2                | 5       | 4                         | 0     | 2     | 2                         | 2<br>3 | 4       | 2                         | 2     | 2        | 4   | 1       | 2              | 2     | 3   | 0     | 1     | 2<br>3 | 7        |
| 2018-02-19                               | DD      | 1-3/10            | 1                | 1      | 0                | 4       | 1                         | 0     | 2     | 2                         | 3      | 4       | 2                         | 2     | 3        | 4   | 2       | 2              | 3     | 4   | 1     | 2     | 3      | 3        |
| 2018-02-19                               | 0       | 9-10/10           | 4                | 4      | 1                | 5       | 4                         | 1     | 2     | 2                         | 2      | 18      | 2                         | 2     | 2        | 18  | 1       | 2              | 2     | 14  | 0     | 1     | 2      | 6        |
| 2018-02-19                               | w       | 7-8/10            | 3                | 2      | 2                | 5       | 4                         | 1     | 2     | 2                         | 2      | 14      | 2                         | 2     | 2        | 14  | 1       | 2              | 2     | 11  | 0     | 1     | 2      | 6        |
| 2018-02-26                               | HH<br>7 | 1-3/10            | 2                | 1      | 0                | 4       | 1                         | 0     | 2     | 2                         | 3      | 6       | 2                         | 2     | 3        | 6   | 2       | 2              | 3     | 6   | 1     | 2     | 3      | 4        |
| 2010-02-20                               | L       | 7-0/10            | 2                | 4      | 2                |         | 4                         | 1     | 2     | 2                         | ٤      | 10      | 2                         | 2     | 2        | 10  | -       | 2              | 2     | 14  | 0     | 1     | 2      | 8        |

| 2019 02 26 |                                        | 4 6/10  | 2 | 2 | 0 | 4  | 1 | 0 | 2 | 2 | 2 | 10 | 2  | 2 | 2 | 10  | 2  | 2 | 2 | 10 | 1  | 2  | 2 | 0  |
|------------|----------------------------------------|---------|---|---|---|----|---|---|---|---|---|----|----|---|---|-----|----|---|---|----|----|----|---|----|
| 2010-02-20 |                                        | 4-0/10  | 2 | 5 | 2 | -  | - |   | 2 | 2 | 2 | 20 | -  | 2 | 2 | 10  | 2  | - | 2 | 10 | -  | 2  | 3 | 0  |
| 2018-03-03 | IN N                                   | 3-10/10 | 2 | 0 | 2 | ,  | - | 4 | 2 | 2 | 2 | 20 | 1  | 2 | 2 | 10  | 0  | 1 | 2 | 10 | -1 |    | 1 | 0  |
| 2018-03-05 | x                                      | 7-8/10  | 2 | 5 | 1 | 5  | 4 | 1 | 2 | 2 | 2 | 16 | 2  | 2 | 2 | 16  | 1  | 2 | 2 | 14 | 0  | 1  | 2 | 7  |
| 2018-03-12 | D                                      | 9-10/10 | 7 | 3 | 0 | 7  | 5 | 0 | 2 | 2 | 3 | 20 | 1  | 2 | 3 | 13  | 0  | 1 | 3 | 3  | -1 | 0  | 3 | -7 |
| 2018-04-09 | Р                                      | 1-3/10  | 2 | 1 | 0 | 7  | 5 | 0 | 2 | 2 | 3 | 6  | 1  | 2 | 3 | 4   | 0  | 1 | 3 | 1  | -1 | 0  | 3 | -2 |
| 2018-04-16 | н                                      | 9-10/10 | 0 | 0 | 0 | 7  | 0 | 0 | 2 | 3 | 3 | 0  | 1  | 3 | 3 | 0   | 0  | 3 | 3 | 0  | -1 | 3  | 3 | 0  |
| 2019-02-04 | Z                                      | 7-8/10  | 3 | 4 | 0 | 4  | 1 | 0 | 2 | 2 | 3 | 14 | 2  | 2 | 3 | 14  | 2  | 2 | 3 | 14 | 1  | 2  | 3 | 11 |
| 2019-02-04 | к                                      | 9-10/10 | 3 | 6 | 1 | 5  | 4 | 1 | 2 | 2 | 2 | 20 | 2  | 2 | 2 | 20  | 1  | 2 | 2 | 17 | 0  | 1  | 2 | 8  |
| 2019-02-04 | FF                                     | 1-3/10  | 1 | 1 | 0 | 4  | 1 | 0 | 2 | 2 | 3 | 4  | 2  | 2 | 3 | 4   | 2  | 2 | 3 | 4  | 1  | 2  | 3 | 3  |
| 2019-02-11 | DD                                     | 2       | 2 | 0 | 4 | 1  | 0 | 0 | 2 | 3 | 3 | 16 | 2  | 3 | 3 | 16  | 2  | 3 | 3 | 16 | 2  | 3  | 3 | 16 |
| 2019-02-11 | F                                      | 6       | 4 | 0 | 5 | 4  | 0 | 0 | 2 | 3 | 3 | 23 | 2  | 3 | 3 | 23  | 2  | 3 | 3 | 23 | 1  | 3  | 3 | 10 |
| 2010 02 11 |                                        | 2       | 2 | 1 | E | 4  | 1 | 0 | 2 | 3 | 2 | 23 | 2  | 2 | 2 | 21  | 2  | 2 | 2 | 21 | 1  | 2  | 2 | 10 |
| 2019-02-11 | 88                                     | 7 0/10  | 2 | - | 3 | 4  | 1 | 0 | 2 | 2 | 3 | 21 | 2  | 2 | 2 | 21  | 2  | 2 | 2 | 10 | 1  | 2  | 2 | 19 |
| 2019-02-18 | вв                                     | 7-8/10  | 3 | 2 | U | 4  | 1 | 0 | 2 | 2 | 3 | 10 | 2  | 2 | 3 | 10  | 2  | 2 | 3 | 10 | 1  | 2  | 3 | 13 |
| 2019-02-18 | AA                                     | 7-8/10  | 5 | 3 | 0 | 5  | 4 | 0 | 2 | 2 | 3 | 16 | 2  | 2 | 3 | 16  | 1  | 2 | 3 | 11 | 0  | 1  | 3 | 3  |
| 2019-02-18 | I                                      | 9-10/10 | 4 | 5 | 1 | 7  | 5 | 4 | 2 | 2 | 2 | 20 | 1  | 2 | 2 | 16  | 0  | 1 | 2 | 7  | -1 | 0  | 1 | -3 |
| 2019-02-25 | 0                                      | 9-10/10 | 1 | 6 | 3 | 7  | 5 | 4 | 2 | 2 | 2 | 20 | 1  | 2 | 2 | 19  | 0  | 1 | 2 | 12 | -1 | 0  | 1 | 2  |
| 2019-02-25 | AA                                     | 7-8/10  | 2 | 4 | 2 | 7  | 5 | 4 | 2 | 2 | 2 | 16 | 1  | 2 | 2 | 14  | 0  | 1 | 2 | 8  | -1 | 0  | 1 | 0  |
| 2019-03-04 | х                                      | 9-10/10 | 2 | 3 | 3 | 7  | 5 | 4 | 2 | 2 | 2 | 16 | 1  | 2 | 2 | 14  | 0  | 1 | 2 | 9  | -1 | 0  | 1 | 1  |
| 2019-03-04 | FF                                     | 7-8/10  | 2 | 4 | 1 | 5  | 4 | 1 | 2 | 2 | 2 | 14 | 2  | 2 | 2 | 14  | 1  | 2 | 2 | 12 | 0  | 1  | 2 | 6  |
| 2019-03-04 | L                                      | 9-10/10 | 4 | 5 | 1 | 5  | 4 | 1 | 2 | 2 | 2 | 20 | 2  | 2 | 2 | 20  | 1  | 2 | 2 | 16 | 0  | 1  | 2 | 7  |
| 2019-03-11 | v                                      | 7-8/10  | 5 | 3 | 0 | 4  | 1 | 0 | 2 | 2 | 3 | 16 | 2  | 2 | 3 | 16  | 2  | 2 | 3 | 16 | 1  | 2  | 3 | 11 |
| 2019-03-11 | 0                                      | 9-10/10 | 3 | 5 | 1 | 7  | 5 | 4 | 2 | 2 | 2 | 18 | 1  | 2 | 2 | 15  | 0  | 1 | 2 | 7  | -1 | 0  | 1 | -2 |
| 2010 03 11 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | J 10/10 |   | 2 | - | 7  | 5 | - | - | 2 | 2 | 10 | -  | 2 | 2 |     | 0  | - | 2 |    | -  | 0  | - | -2 |
| 2019-03-11 | GG                                     | 4-6/10  | 1 | 2 | 1 | /  | 5 | 4 | 2 | 2 | 2 | 8  | 1  | 2 | 2 | /   | 0  | 1 | 2 | 4  | -1 | 0  | 1 | 0  |
| 2019-03-11 | 1                                      | 9-10/10 | 1 | 5 | 3 | /  | 5 | 4 | 2 | 2 | 2 | 18 | 1  | 2 | 2 | 1/  | 0  | 1 | 2 | 11 | -1 | 0  | 1 | 2  |
| 2019-03-11 | нн                                     | 1-3/10  | 2 | 1 | 0 | 5  | 4 | 0 | 2 | 2 | 3 | 6  | 2  | 2 | 3 | 6   | 1  | 2 | 3 | 4  | 0  | 1  | 3 | 1  |
| 2019-03-18 | Z                                      | 7-8/10  | 2 | 4 | 1 | 7  | 5 | 4 | 2 | 2 | 2 | 14 | 1  | 2 | 2 | 12  | 0  | 1 | 2 | 6  | -1 | 0  | 1 | -1 |
| 2019-03-18 | к                                      | 9-10/10 | 3 | 5 | 1 | 7  | 5 | 4 | 2 | 2 | 2 | 18 | 1  | 2 | 2 | 15  | 0  | 1 | 2 | 7  | -1 | 0  | 1 | -2 |
| 2019-03-25 | w                                      | 7-8/10  | 6 | 1 | 0 | 7  | 5 | 0 | 2 | 2 | 3 | 14 | 1  | 2 | 3 | 8   | 0  | 1 | 3 | 1  | -1 | 0  | 3 | -6 |
| 2019-03-25 | G                                      | 9-10/10 | 1 | 6 | 3 | 1* | 7 | 5 | 0 | 2 | 2 | 18 | -1 | 1 | 2 | 11  | -2 | 0 | 1 | 1  | -3 | -1 | 0 | -9 |
| 2019-03-25 | EE                                     | 4-6/10  | 1 | 2 | 1 | 7  | 5 | 4 | 2 | 2 | 2 | 8  | 1  | 2 | 2 | 7   | 0  | 1 | 2 | 4  | -1 | 0  | 1 | 0  |
| 2019-04-01 | U                                      | 7-8/10  | 5 | 2 | 0 | 7  | 5 | 0 | 2 | 2 | 3 | 14 | 1  | 2 | 3 | 9   | 0  | 1 | 3 | 2  | -1 | 0  | 3 | -5 |
| 2020-02-17 | N                                      | 9-10/10 | 3 | 5 | 1 | 5  | 4 | 1 | 2 | 2 | 2 | 18 | 2  | 2 | 2 | 18  | 1  | 2 | 2 | 15 | 0  | 1  | 2 | 7  |
| 2020-02-17 | 1                                      | 9-10/10 | 2 | 7 | 1 | 7  | 5 | 4 | 2 | 2 | 2 | 20 | 1  | 2 | 2 | 18  | 0  | 1 | 2 | 9  | -1 | 0  | 1 | -1 |
| 2020 02 24 | 0.0                                    | 1 2/10  | - | , | 0 | 1  | 0 | 0 | 2 | 2 | 2 | 20 | 2  | 2 | 2 | -10 | 2  | 2 | 2 | 0  | 2  | 2  | 2 | 0  |
| 2020-02-24 | 55                                     | 1-5/10  | 0 | 0 | 0 | 1  | 0 | 0 | 2 | 3 | 3 | 12 | 2  | 3 | 2 | 12  | 2  | 3 | 2 | 10 | 2  | 2  | 2 | 10 |
| 2020-02-24 | <u></u>                                | 4-6/10  | 2 | 4 | U | 4  | 1 | 0 | 2 | 2 | 3 | 12 | 2  | 2 | 3 | 12  | 2  | 2 | 3 | 12 | 1  | 2  | 3 | 10 |
| 2020-02-24 | w                                      | 4-6/10  | 5 | 1 | 0 | 5  | 4 | 0 | 2 | 2 | 3 | 12 | 2  | 2 | 3 | 12  | 1  | 2 | 3 | /  | 0  | 1  | 3 | 1  |
| 2020-02-24 | x                                      | 4-6/10  | 2 | 4 | 0 | 4  | 1 | 0 | 2 | 2 | 3 | 12 | 2  | 2 | 3 | 12  | 2  | 2 | 3 | 12 | 1  | 2  | 3 | 10 |
| 2020-02-24 | L                                      | 9-10/10 | 7 | 2 | 0 | 5  | 4 | 0 | 2 | 2 | 3 | 18 | 2  | 2 | 3 | 18  | 1  | 2 | 3 | 11 | 0  | 1  | 3 | 2  |
| 2020-03-02 | н                                      | 9-10/10 | 4 | 5 | 1 | 7  | 5 | 4 | 2 | 2 | 2 | 20 | 1  | 2 | 2 | 16  | 0  | 1 | 2 | 7  | -1 | 0  | 1 | -3 |
| 2020-03-02 | U                                      | 4-6/10  | 2 | 2 | 2 | 5  | 4 | 1 | 2 | 2 | 2 | 12 | 2  | 2 | 2 | 12  | 1  | 2 | 2 | 10 | 0  | 1  | 2 | 6  |
| 2020-03-09 | т                                      | 7-8/10  | 3 | 5 | 0 | 7  | 5 | 0 | 2 | 2 | 3 | 16 | 1  | 2 | 3 | 13  | 0  | 1 | 3 | 5  | -1 | 0  | 3 | -3 |
| 2020-03-09 | BB                                     | 4-6/10  | 3 | 2 | 0 | 5  | 4 | 0 | 2 | 2 | 3 | 10 | 2  | 2 | 3 | 10  | 1  | 2 | 3 | 7  | 0  | 1  | 3 | 2  |
| 2020-03-16 | DD                                     | 1-3/10  | 1 | 2 | 0 | 7  | 5 | 0 | 2 | 2 | 3 | 6  | 1  | 2 | 3 | 5   | 0  | 1 | 3 | 2  | -1 | 0  | 3 | -1 |
| 2020-03-16 | 7                                      | 4-6/10  | 2 | 3 | 0 | 7  | 5 | 0 | 2 | 2 | 3 | 10 | 1  | 2 | 3 | 8   | 0  | 1 | 3 | 3  | -1 | 0  | 3 | -2 |
| 2020-02-22 | т                                      | 7-9/10  | - | 4 | 0 | 7  | 5 | 0 | 2 | 2 | 2 | 16 | 1  | 2 | 2 | 12  | 0  | 1 | 2 | 4  | -1 | 0  | 2 | -4 |
| 2020-03-23 |                                        | 4-6/10  | 1 | 1 | 3 | 7  | 5 | 1 | 2 | 2 | 2 | 10 | 1  | 2 | 2 | 0   | 0  | 1 | 2 | 7  | -1 | 0  | 2 | 5  |
| 2020-03-23 |                                        | 4-0/10  | 1 | 1 | 3 | ,  |   | 1 | 2 | 2 | 2 | 10 | 1  | 2 | 2 | ,   | 1  | 1 | 2 | 2  | -1 | 1  | 2 | 2  |
| 2021-03-08 | FF                                     | 4-6/10  | 2 | 1 | 1 | 5  | 4 | 1 | 2 | 2 | 2 | 8  | 2  | 2 | 2 | 8   | 1  | 2 | 2 | 0  | 0  | 1  | 2 | 3  |
| 2022-02-28 | Y                                      | 7-8/10  | 2 | 4 | 1 | 5  | 4 | 1 | 2 | 2 | 2 | 14 | 2  | 2 | 2 | 14  | 1  | 2 | 2 | 12 | 0  | 1  | 2 | 6  |
| 2022-03-07 | U                                      | 7-8/10  | 2 | 5 | 0 | 4  | 1 | 0 | 2 | 2 | 3 | 14 | 2  | 2 | 3 | 14  | 2  | 2 | 3 | 14 | 1  | 2  | 3 | 12 |
| 2022-03-07 | т                                      | 7-8/10  | 4 | 3 | 0 | 5  | 4 | 0 | 2 | 2 | 3 | 14 | 2  | 2 | 3 | 14  | 1  | 2 | 3 | 10 | 0  | 1  | 3 | 3  |
| 2022-03-07 | CC                                     | 1-3/10  | 1 | 2 | 0 | 5  | 4 | 0 | 2 | 2 | 3 | 6  | 2  | 2 | 3 | 6   | 1  | 2 | 3 | 5  | 0  | 1  | 3 | 2  |
| 2022-03-14 | EE                                     | 4-6/10  | 3 | 1 | 0 | 7  | 5 | 0 | 2 | 2 | 3 | 8  | 1  | 2 | 3 | 5   | 0  | 1 | 3 | 1  | -1 | 0  | 3 | -3 |
| 2022-03-14 | 0                                      | 9-10/10 | 2 | 5 | 1 | 7  | 5 | 4 | 2 | 2 | 2 | 16 | 1  | 2 | 2 | 14  | 0  | 1 | 2 | 7  | -1 | 0  | 1 | -1 |
| 2022-03-21 | Р                                      | 7-8/10  | 6 | 2 | 0 | 7  | 5 | 0 | 2 | 2 | 3 | 16 | 1  | 2 | 3 | 10  | 0  | 1 | 3 | 2  | -1 | 0  | 3 | -6 |
| 2022-03-21 | х                                      | 4-6/10  | 4 | 1 | 0 | 7  | 5 | 0 | 2 | 2 | 3 | 10 | 1  | 2 | 3 | 6   | 0  | 1 | 3 | 1  | -1 | 0  | 3 | -4 |
| 2022-03-28 |                                        | 9-10/10 | 7 | 2 | 0 | 7  | 5 | - | 2 | 2 | 3 | 18 | 1  | 2 | 3 | 11  | 0  | 1 | 3 | 2  | -1 | 0  | 3 | -7 |
| 1011 00-20 |                                        | 5 10/10 | ' | 2 | 0 |    | 5 | 5 | 2 | - | 5 | 10 | -  | - | 5 |     | 5  | - | 5 | 2  | 1  | 5  | 5 | -/ |





# APPENDIX C – STRUCTURAL CALCULATIONS

# STRUCTURAL CALCULATIONS

### 1.1 MINIMUM SECTION MODULUS

The minimum section modulus was determined using the equations provided in DNV-RU-SHIP Pt. 3 Chapter 5 Hull Girder Strength. Two methods of determining the section modulus are given. The first method bases the required section modulus on the hull geometry and material, while the second method uses still water and wave-induced bending moments. These are shown in Tables 1 and 2. The method which gives the larger section modulus is taken as the minimum. Therefore, the value obtained from the first method was taken as the minimum section modulus. A material factor of 0.72 was used based on the yield strength of AH36 steel.

| Required Section Modulus                  |                   |       |
|-------------------------------------------|-------------------|-------|
| Parameter                                 | Symbol            | Value |
| Length (m)                                | L                 | 188   |
| Beam (m)                                  | В                 | 28    |
| Block Coefficient                         | Св                | 0.63  |
| Material Factor                           | k                 | 0.72  |
| Reduction Factor                          | <i>f</i> r        | 1     |
| Wave Parameter                            | C <sub>wo</sub>   | 9.56  |
| Minimum Section Modulus (m <sup>3</sup> ) | Z <sub>R-gr</sub> | 9.06  |

#### Table 1: Minimum section modulus, first method

#### Table 2: Minimum section modulus, second method

| Parameter                                                                                            | Symbol              | Value     |
|------------------------------------------------------------------------------------------------------|---------------------|-----------|
| Length (m)                                                                                           | L                   | 188       |
| Beam (m)                                                                                             | В                   | 28        |
| Block Coefficient                                                                                    | CB                  | 0.63      |
| Wave Coefficient                                                                                     | Cw                  | 9.56      |
| Distribution factor along the ship length                                                            | f <sub>sw</sub>     | 1         |
| Factor related to the operational profile                                                            | f <sub>R</sub>      | 0.85      |
| Coefficient considering non-linear effects applied to hogging                                        | ${f f}_{\sf nl-vh}$ | 1         |
| Coefficient considering non-linear effects applied to sagging                                        | f <sub>nl-vs</sub>  | 1.22      |
| Distribution factor for strength assessment for vertical wave bending moment along the ship's length | f <sub>m</sub>      | 1         |
| Coefficient for strength assessment                                                                  | fp                  | 1         |
| Vertical wave bending moment for strength assessment amidships in hogging condition (kNm)            | $M_{wv-h-mid}$      | 1133024.7 |

| Vertical wave bending moment for strength assessment amidships in sagging condition (kNm) | $M_{wv-s-mid}$         | -1384694.7 |
|-------------------------------------------------------------------------------------------|------------------------|------------|
| Bending Moment Hogging Condition (kNm)                                                    | M <sub>sw-h-min</sub>  | 1019722.3  |
| Bending Moment Sagging Condition (kNm)                                                    | M <sub>sw-s-min</sub>  | -652844.4  |
| Permissible Hull Girder Bending Stress (N/mm <sup>2</sup> )                               | $\sigma_{\text{perm}}$ | 243.1      |
| Minimum Section Modulus, hogging (m <sup>3</sup> )                                        | $Z_{GR-h}$             | 8.86       |
| Minimum Section Modulus, sagging (m <sup>3</sup> )                                        | Z <sub>GR-s</sub>      | 8.38       |

### 1.2 SCANTLINGS

The procedures for calculating various components of the vessel's structure are described below.

#### 1.2.1 Vehicle Deck Plating

The thickness of the vehicle deck plating was determined using the equations and values provided in DNV-RU-SHIP Pt. 3 Chapter 10 Special Requirements. The calculations are shown in Table 3:

#### Table 3: Vehicle deck plating thickness

| Length (m)                                          | L              | 188         |
|-----------------------------------------------------|----------------|-------------|
| Block Coefficient                                   | C <sub>B</sub> | 0.63        |
| Deck Plate Length (mm)                              | а              | 10000       |
| Deck Plate Width (mm)                               | b              | 4000        |
| Aspect Ratio Correction                             | $\alpha_p$     | 1.00952381  |
| Coefficient                                         | k <sub>w</sub> | 0.35        |
| Factor for wheels parallel to stiffeners            | К              | 2           |
| Gravity (m/s²)                                      | g              | 9.81        |
| Factor for number of wheels per axle                | W              | 1.2         |
| Maximum axle load (tonnes)                          | Q              | 15.4        |
| Number of load areas per axle                       | n <sub>0</sub> | 4           |
| Maximum Tire Pressure (kN/m <sup>2</sup> )          | p <sub>0</sub> | 1000        |
| Load area (m <sup>2</sup> )                         | А              | 0.0453222   |
| Tire Contact Area Width (mm)                        | a1             | 301.0720844 |
| Tire Contact Area Length (mm)                       | b1             | 150.5360422 |
| Local breadth (mm)                                  | С              | 150.5360422 |
| Stiffener spacing (mm)                              | b              | 1000        |
| Acceleration parameter                              | a <sub>0</sub> | 0.44        |
| Coefficient for strength assement for load scenario | <b>f</b> ps    | 1.00        |
| Coefficient for ships with bilge keels              | fвк            | 1.20        |
| Metacentric height (m)                              | GM             | 1.96        |

| Roll radius of gyration (mm)                          | k <sub>r</sub>              | 10.92   |
|-------------------------------------------------------|-----------------------------|---------|
| Roll period (s)                                       | T <sub>θ</sub>              | 17.99   |
| Roll angle (deg)                                      | θ                           | 30.36   |
| Ratio between loading and scantling draft             | f⊤                          | 1.00    |
| Wave length (m)                                       | $\lambda_{\phi}$            | 225.60  |
| Pitch period (s)                                      | $T_{\phi}$                  | 12.02   |
| Pitch Angle (deg)                                     | φ                           | 11.70   |
| Transvers location (m from CL)                        | у                           | 9.80    |
| Heave acceleration (m/s <sup>2</sup> )                | <b>a</b> heave              | 4.3     |
| Roll acceleration (rad/s <sup>2</sup> )               | a <sub>roll</sub>           | 0.065   |
| Pitch acceleration (rad/s <sup>2</sup> )              | <b>a</b> pitch              | 0.069   |
| Verical acceleration due to pitch (m/s <sup>2</sup> ) | <b>a</b> <sub>pitch-z</sub> | 8.18    |
| Verical acceleration due to roll (m/s <sup>2</sup> )  | a <sub>roll-z</sub>         | 0.63    |
| Total vertical acceleration (m/s <sup>2</sup> )       | az                          | 8.89    |
| Design presure in harbour (kN/m <sup>2</sup> )        | P <sub>wl-1</sub>           | 898.27  |
| Design presure at sea (kN/m <sup>2</sup> )            | P <sub>wl-2</sub>           | 1588.76 |
| Bending moment factor                                 | m                           | 6.53    |
| Maximum hull girder stress (kN)                       | $\sigma_{hg}$               | 284.72  |
| Yield Strength                                        | ReH                         | 355     |
| Coefficient                                           | α <sub>a</sub>              | 0.5     |
| Coefficient                                           | βa                          | 2.1     |
| Permissible bending stress coefficient                | Ca                          | 1.70    |
| Minimum plate thickness for vehicle decks (mm)        | t                           | 11.4    |
| Increment for abrasion and corrosion (mm)             | t <sub>c1</sub>             | 1       |
| Increment for abrasion and corrosion (mm)             | t <sub>c2</sub>             | 1       |
| Reserve thickness (mm)                                | t <sub>res</sub>            | 0.5     |
| Designed plate thickness (mm)                         | t <sub>des</sub>            | 14.0    |

#### 1.2.2 Ice Belt Scantlings

The scantlings for the ice belt were calculated using equations and values provided in DNV-RU-SHIP Pt. 6 Chapter 6 Cold Climate. The procedure for calculating the side shell thickness of the ice belt is shown in table 4 below:

#### Table 4: Ice belt side shell plating scantlings

| Ice Belt Scantlings                                                                                                              |                  |          |  |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------|------------------|----------|--|--|--|--|--|--|--|
| Displacement (tonnes)                                                                                                            | Δf               | 24578    |  |  |  |  |  |  |  |
| Power available when sailing through ice (kW)                                                                                    | Ps               | 14700    |  |  |  |  |  |  |  |
| Factor                                                                                                                           | k <sub>1</sub>   | 19.0078  |  |  |  |  |  |  |  |
| Factors for bow, midbody, and stern regions                                                                                      | a1               | 2        |  |  |  |  |  |  |  |
| Factors for bow, midbody, and stern regions                                                                                      | b1               | 286      |  |  |  |  |  |  |  |
| Factor which accounts for the size and engine power of the ship                                                                  | Cd               | 0.324016 |  |  |  |  |  |  |  |
| Factor that reflects the magnitude of the load expected on the hull area relative to bow area                                    | C1               | 0.85     |  |  |  |  |  |  |  |
| Full length (m)                                                                                                                  | lo               | 0.6      |  |  |  |  |  |  |  |
| Length of area under consideration (m)                                                                                           | la               | 1.7      |  |  |  |  |  |  |  |
| Factor which account for the probability that the length of the area under consideration will be under pressure at the same time | Ca               | 0.59     |  |  |  |  |  |  |  |
| Design Pressure (kN/m <sup>2</sup> )                                                                                             | Р                | 916.2712 |  |  |  |  |  |  |  |
| Design ice height (m)                                                                                                            | h                | 0.3      |  |  |  |  |  |  |  |
| Stiffener spacing (m)                                                                                                            | S <sub>1</sub>   | 1        |  |  |  |  |  |  |  |
| Factor for longitudinal framing                                                                                                  | f <sub>2</sub>   | 1.93     |  |  |  |  |  |  |  |
| Increment for abrasion and corrosion (mm)                                                                                        | t <sub>c</sub>   | 2        |  |  |  |  |  |  |  |
| Yield strength (MPa)                                                                                                             | ReH              | 355      |  |  |  |  |  |  |  |
| Minimum required thickness (mm)                                                                                                  | t                | 26.4     |  |  |  |  |  |  |  |
| Designed thickness (mm)                                                                                                          | t <sub>des</sub> | 30       |  |  |  |  |  |  |  |

#### 1.2.3 Other Scantlings

The scantlings for other components of the ship's structure were calculated based on the DNV-RU-SHIP Pt. 3 Chapter 6 Hull Local Scantling. Tables 5 – 7 below summarise the minimum scantlings of various structural elements.

#### Table 5: Plating scantlings

|              |                                      | Plating                                                          |       |       |               |                         |                         |                          |                        |                 |
|--------------|--------------------------------------|------------------------------------------------------------------|-------|-------|---------------|-------------------------|-------------------------|--------------------------|------------------------|-----------------|
| Element      |                                      | Location                                                         | а     | b     | min t<br>(mm) | t <sub>c1</sub><br>(mm) | t <sub>c2</sub><br>(mm) | t <sub>res</sub><br>(mm) | t <sub>c</sub><br>(mm) | Gross t<br>(mm) |
|              |                                      | Keel                                                             | 5     | 0.05  | 13.0          | 0.5                     | 0.5                     | 0.5                      | 1.5                    | 15              |
|              | Bottom, Bilge, a                     | 4.5                                                              | 0.035 | 10.1  | 1             | 1                       | 0.5                     | 2                        | 13                     |                 |
| Shell        |                                      | From upper end of bilge plating to T <sub>SC</sub> + 4.6         |       | 0.035 | 9.6           | 1                       | 1                       | 0.5                      | 2                      | 12              |
|              | Side Shell and                       | From T <sub>sc</sub> + 4.6 to T <sub>sc</sub> + 6.9              | 4     | 0.025 | 4.0           | 1                       | 0.5                     | 0.5                      | 1.5                    | 6               |
|              | Superstructure Side                  | From T <sub>sc</sub> + 6.9 to T <sub>sc</sub> + 9.2<br>Elsewhere |       | 0.015 | 2.4           | 1                       | 0.5                     | 0.5                      | 1.5                    | 4               |
|              |                                      |                                                                  |       | 0.01  | 1.6           | 1                       | 0.5                     | 0.5                      | 1.5                    | 4               |
|              | Weather Deck and Strength Deck       |                                                                  |       | 0.02  | 7.7           | 1                       | 0.5                     | 0.5                      | 1.5                    | 10              |
| Deck         | Boundary for cargo tanks<br>intendec | 4.5                                                              | 0.015 | 2.4   | 1             | 1                       | 0.5                     | 2.5                      | 5                      |                 |
|              | Other Decks                          |                                                                  |       | 0.01  | 1.6           | 1                       | 0.5                     | 0.5                      | 2                      | 4               |
| Inner Bottom |                                      |                                                                  | 4.5   | 0.02  | 7.7           | 1                       | 0.5                     | 0.5                      | 2                      | 10              |
| Bulkhoods    | Bulkhead for car                     | 1 5                                                              | 0.015 | 6.9   | 1             | 1                       | 0.5                     | 2.5                      | 10                     |                 |
| Bulkheads    | Water                                | 4.5                                                              | 0.01  | 6.1   | 1             | 0.5                     | 0.5                     | 1.5                      | 8                      |                 |

#### Table 6: Stiffeners and tripping bracket scantlings

|                   | Stiffeners and Tripping Brackets                                   |               |                         |                          |                        |                 |  |  |  |  |  |  |
|-------------------|--------------------------------------------------------------------|---------------|-------------------------|--------------------------|------------------------|-----------------|--|--|--|--|--|--|
| Element           | Location                                                           | min t<br>(mm) | t <sub>c1</sub><br>(mm) | t <sub>res</sub><br>(mm) | t <sub>c</sub><br>(mm) | Gross t<br>(mm) |  |  |  |  |  |  |
| Stiffeners and    | Tank boundary, single strength deck and shell up to freeboard deck | 6.38          | 1                       | 0.5                      | 2.5                    | 9               |  |  |  |  |  |  |
| attached end      | Structures in deckhouse and superstructure                         | 4             | 1                       | 0.5                      | 2.5                    | 7               |  |  |  |  |  |  |
| brackets          | Other structure                                                    | 5.44          | 1                       | 0.5                      | 2.5                    | 8               |  |  |  |  |  |  |
| Tripping Brackets |                                                                    | 6.38          | 1                       | 0.5                      | 1.5                    | 8               |  |  |  |  |  |  |

#### Table 7: Primary supporting members scantlings

| Primary Supporting Members                                                                                              |     |       |               |                         |                          |                        |                 |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------|-----|-------|---------------|-------------------------|--------------------------|------------------------|-----------------|--|--|--|
| Element                                                                                                                 | а   | b     | min t<br>(mm) | t <sub>c1</sub><br>(mm) | t <sub>res</sub><br>(mm) | t <sub>c</sub><br>(mm) | Gross t<br>(mm) |  |  |  |
| Bottom centerline girder over full length of ship                                                                       | 5   | 0.03  | 9.8           | 1                       | 0.5                      | 2.5                    | 13.0            |  |  |  |
| Bottom longitudinal girders                                                                                             | 5   | 0.017 | 7.7           | 1                       | 0.5                      | 2.5                    | 11.0            |  |  |  |
| Floors in aft peak tanks including reduced floors or floors with large opening                                          | 5   | 0.025 | 9.0           | 1                       | 0.5                      | 2.5                    | 12.0            |  |  |  |
| Floors in general                                                                                                       | 5   | 0.015 | 7.4           | 1                       | 0.5                      | 2.5                    | 10.0            |  |  |  |
| PSM at tank boundaries, single strength deck and shell up to freeboard deck                                             | 4.5 | 0.015 | 6.9           | 1                       | 0.5                      | 2.5                    | 10.0            |  |  |  |
| PSM in deckhouses and superstructures and decks for vessels with more than 2 continuous decks above 0.7 D from baseline | 4.5 | 0.01  | 6.1           | 1                       | 0.5                      | 2.5                    | 9.0             |  |  |  |
| Primary Supporting Members in general                                                                                   | 4.5 | 0.01  | 6.1           | 1                       | 0.5                      | 2.5                    | 9.0             |  |  |  |

# 1.3 DESIGNED SECTION MODULUS

The section modulus of the midship section was determined to be 13.1mm<sup>3</sup>, as shown in Table 8 below.

Table 8: Designed section modulus

|              |              |                                   |      | Vertical Span | Transverse | NΔ           | А      | 1 <sup>st</sup> Moment | 2 <sup>nd</sup> Moment | Local 2 <sup>nd</sup> Moment |                    |
|--------------|--------------|-----------------------------------|------|---------------|------------|--------------|--------|------------------------|------------------------|------------------------------|--------------------|
|              |              | ltem                              | Qty. | [mm]          | [mm]       | Span<br>[mm] | [mm]   | [mm <sup>2</sup> ]     | [mm <sup>3</sup> ]     | [mm <sup>4</sup> ]           | [mm <sup>4</sup> ] |
|              |              | Bottom Plating                    | 1    | 15            | 0          | 7000         | 7.5    | 105000                 | 787500                 | 5906250                      | 1968750            |
|              | Chall        | Bilge Strake                      | 1    | 13            | -          | -            | 1163.5 | 148615                 | 172913319.8            | 2.01185E+11                  | 2092991.8          |
|              | Shell        | Ice Belt                          | 1    | 30            | 3000       | -            | 6493   | 90000                  | 584370000              | 3.79431E+12                  | 6750000            |
| Plating      |              | Sideshell                         | 1    | 11            | 4500       | -            | 12500  | 49500                  | 618750000              | 7.73438E+12                  | 499125             |
|              |              | Tank Top                          | 1    | 9             | -          | 13774        | 1995.5 | 123966                 | 247374153              | 4.93635E+11                  | 836770.5           |
| Deck Plate   | Deck Plates  | C Deck                            | 1    | 14            | -          | 13970        | 7993   | 195580                 | 1563270940             | 1.24952E+13                  | 3194473.333        |
|              |              | A Deck                            | 1    | 14            | -          | 13970        | 16993  | 195580                 | 3323490940             | 5.64761E+13                  | 3194473.333        |
|              |              | Double Bottom CL Girder Girder    | 1    | 13            | 1976       | -            | 1003   | 25688                  | 25765064               | 25842359192                  | 361772.6667        |
|              | Girdors      | Bottom Girders                    | 1    | 11            | 1976       | -            | 1003   | 21736                  | 21801208               | 21866611624                  | 219171.3333        |
| Primary      | Giruers      | 500x500x12 C Deck CL Girder       | 1    | 12            | -          | -            | 7608   | 12000                  | 91296000               | 6.9458E+11                   | 144000             |
|              |              | 500x500x12 D Deck CL Girder       | 1    | 12            | -          | -            | 4613   | 12000                  | 55356000               | 2.55357E+11                  | 144000             |
| Mombors      |              | A Deck Bulkhead                   | 2    | 8             | 3386       | -            | 15293  | 54176                  | 828513568              | 1.26705E+13                  | 288938.6667        |
| wientbers    | Longitudinal | A Deck Bulkhead Coaming           | 2    | 8             | 100        | -            | 11550  | 1600                   | 18480000               | 2.13444E+11                  | 8533.333333        |
|              | Bulkheads    | B Deck Bulkhead                   | 2    | 8             | 1388       | -            | 10792  | 22208                  | 239668736              | 2.5865E+12                   | 118442.6667        |
|              |              | B Deck Bulkhead Coaming           | 2    | 8             | 100        | -            | 8050   | 1600                   | 12880000               | 1.03684E+11                  | 8533.333333        |
|              |              | 300x300x12 Bilge Longitudinal 1   | 1    | 12            | -          | -            | 244    | 7200                   | 1756800                | 428659200                    | 86400              |
|              |              | 300x300x12 Bilge Longitudinal 2   | 1    | 12            | -          | -            | 250    | 7200                   | 1800000                | 45000000                     | 86400              |
|              | Bilge        | 300x300x12 Bilge Longitudinal 3   | 1    | 12            | -          | -            | 264    | 7200                   | 1900800                | 501811200                    | 86400              |
|              |              | 300x300x12 Bilge Longitudinal 4   | 1    | 12            | -          | -            | 291    | 7200                   | 2095200                | 609703200                    | 86400              |
|              |              | 300x300x12 Bilge Longitudinal 5   | 1    | 12            | -          | -            | 347.5  | 7200                   | 2502000                | 869445000                    | 86400              |
|              |              | 300x300x12 Bilge Longitudinal 6   | 1    | 12            | -          | -            | 452    | 7200                   | 3254400                | 1470988800                   | 86400              |
| Longitudinal |              | 300x300x12 Bilge Longitudinal 7   | 1    | 12            | -          | -            | 630.5  | 7200                   | 4539600                | 2862217800                   | 86400              |
| Stiffonors   |              | 300x300x12 Bilge Longitudinal 8   | 1    | 12            | -          | -            | 908    | 7200                   | 6537600                | 5936140800                   | 86400              |
| Suiteners    |              | 300x300x12 Bilge Longitudinal 9   | 1    | 12            | -          | -            | 1319.5 | 7200                   | 9500400                | 12535777800                  | 86400              |
|              |              | 300x300x12 Bottom Longitudinals   | 9    | 12            | -          | -            | 243    | 64800                  | 15746400               | 3826375200                   | 777600             |
|              |              | 300x300x12 Tank Top Longitudinals | 17   | 12            | -          | -            | 1763   | 122400                 | 215791200              | 3.8044E+11                   | 1468800            |
|              | Deales       | 300x300x12 D Deck Longitudinals   | 17   | 12            | -          | -            | 4763   | 122400                 | 582991200              | 2.77679E+12                  | 1468800            |
|              | Decks        | 300x300x12 C Deck Longitudinals   | 17   | 12            | -          | -            | 7758   | 122400                 | 949579200              | 7.36684E+12                  | 1468800            |
|              |              | 300x300x12 B Deck Longitudinals   | 17   | 12            | -          | -            | 11258  | 122400                 | 1377979200             | 1.55133E+13                  | 1468800            |
|              |              | 300x300x12 A Deck Lonfitudinals   | 17   | 12            | -          | -            | 16758  | 122400                 | 2051179200             | 3.43737E+13                  | 1468800            |
|              |              | Sum                               |      |               |            |              |        | 1800848.8              | 13031870629            | 1.58207E+14                  | 28729175.93        |
|              |              |                                   |      |               |            |              |        | h                      | _NA                    | 7236.515708 mm               |                    |
|              |              |                                   |      |               |            |              |        | 1                      | ZZ                     | 1.5822E+14 mm                | 4                  |
|              |              |                                   |      |               |            |              |        | -                      | NA                     | 1.2783F+14 mm                | 5                  |
|              |              |                                   |      |               |            |              |        | <br>D                  | <br>)eck v             | 9763,484292 mm               |                    |
|              |              |                                   |      |               |            |              |        | к                      | eel v                  | 7236.515708 mm               |                    |
|              |              |                                   |      |               |            |              |        | z                      | Deck                   | 13092612484 mm               | 3                  |
|              |              |                                   |      |               |            |              |        | z                      | Keel                   | 17664511692 mm               | 3                  |
|              |              |                                   |      |               |            |              |        | z                      | Deck                   | 13.1 mm                      | 3                  |
|              |              |                                   |      |               |            |              |        | z                      | Keel                   | 17.7 mm                      | 3                  |





# APPENDIX D – MIDSHIP SECTION DRAWING







# APPENDIX E – WEIGHT ESTIMATE

# WEIGHTS AND CENTERS ESTIMATE

# 1.1 LIGHTSHIP

The preliminary lightship weights and centres estimates were produced using a series of parametric equations created by D.G.M. Watson, provided in SNAME's Ship Design and Construction Volume 1. The method separates the total lightship weight into four weight groups:

- Structural Weight (W<sub>s</sub>)
- Machinery Weight (W<sub>M</sub>)
- Outfit Weight (W<sub>0</sub>)
- Weight Margin (W<sub>Margin</sub>)

The table below contains the inputs used in the following weights and centres estimates.

| Length Between Perpendiculars   | L (m)               | 188.0 |
|---------------------------------|---------------------|-------|
| Beam                            | B (m)               | 28.0  |
| Draft                           | T (m)               | 6.7   |
| Depth                           | D (m)               | 17.0  |
| Block Coefficient               | Cb                  | 0.627 |
| Height of the Double Bottom     | H <sub>db</sub> (m) | 2.0   |
| Engine Room Overhead Height     | D' (m)              | 8.0   |
| Height of the Main Deck         | O (m)               | 17.0  |
| Longitudinal Center of Buoyancy | LCB (m)             | 97.05 |
|                                 |                     |       |

### 1.1.1 Structural Weight

The structural weight group is divided into three groups – basic structure weight ( $W_s$ ), superstructure weight ( $W_{ss}$ ), and deckhouse(s) weight ( $W_{dh}$ ). Structural weight is estimated using a modified Lloyd's equipment numeral, E, as the independent variable:

$$E = E_{hull} + E_{SS} + E_{dh}$$
$$E_{hull} = L(B + T) + 0.85(D - T)$$
$$E_{SS} = 0.85 \sum_{i} \ell_i h_i$$

$$E_{dh} = 0.75 \sum_{j} \ell_j h_j$$

The projected area of the superstructure and deckhouse is required for the above equations. These values were assumed to be 1328m<sup>2</sup> and 390m<sup>2</sup>, respectively and were obtained from the AutoCAD profile drawing of the vessel. The table below shows the calculated Lloyd's numeral.

| E <sub>hull</sub> | 8169.54 |
|-------------------|---------|
| Ess               | 1128.8  |
| E <sub>dh</sub>   | 292.5   |
| E                 | 9590.84 |

The weight of the hull is then calculated with the equation:

$$W_S = W_S(E) = KE^{1.36}(1 + 0.5(C'_b - 0.7))$$

Where  $C_b$ ' is the block coefficient correction factor. The structural weight coefficient, K, was taken as 0.038, as recommended for passenger vessels in the following table.

| Ship type          | K mean | K range | Range of E           |
|--------------------|--------|---------|----------------------|
| Tankers            | 0.032  | ±0.003  | 1500 < E < 40 000    |
| Chemical tankers   | 0.036  | ±0.001  | 1900 < E < 2500      |
| Bulk carriers      | 0.031  | ±0.002  | 3000 < E < 15 000    |
| Container ships    | 0.036  | ±0.003  | $6000 < E < 13\ 000$ |
| Cargo              | 0.033  | ±0.004  | 2000 < E < 7000      |
| Refrigerator ships | 0.034  | ±0.002  | 4000 < E < 6000      |
| Coasters           | 0.030  | ±0.002  | 1000 < E < 2000      |
| Offshore supply    | 0.045  | ±0.005  | 800 < E < 1300       |
| Tugs               | 0.044  | ±0.002  | 350 < E < 450        |
| Fishing trawlers   | 0.041  | ±0.001  | 250 < E < 1300       |
| Research vessels   | 0.045  | ±0.002  | 1350 < E < 1500      |
| RO-RO ferries      | 0.031  | ±0.006  | 2000 < E < 5000      |
| Passenger ships    | 0.038  | ±0.001  | 5000 < E < 15 000    |
| Frigates/corvettes | 0.023  |         |                      |

The weight of the basic structure is then estimated:

 $W_{\rm S} = 0.038(9590.84)^{1.36} (1 + 0.5(0.755 - 0.7)) = 10,160.0 \ tonnes$ 

The weight of the superstructure and deckhouse are similarly estimated:

$$W_{SS} = W_S(E_{hull} + E_{SS}) - W_S(E_{hull}) = 1572 \text{ tonnes}$$

$$W_{dh} = W_S(E_{hull} + E_{SS} + E_{dh}) - W_S(E_{hull} + E_{SS}) = 419 \text{ tonnes}$$

#### 1.1.2 Machinery Weight

The machinery weight is estimated with the following equation, which is recommended for diesel-electric plants:

$$W_M = 0.72 (MCR)^{0.78}$$

The ferry's two Wartsila 10V31DF engines produce a combined 12,000kW, and the two 8V31DF produce a combined 9600kW. The total MCR is, therefore, 21,600kW.

$$W_{M=}0.72(21600)^{0.78} = 1730.6 \ tonnes$$

#### 1.1.3 Outfit Weight

Outfit weight is estimated with the equation below:

$$W_o = C_o LB$$

Where  $C_0$  is the outfit coefficient. This was taken as 1.4 based on the figure provided below.



Length Between Perpendiculars LBP [m]

The outfit weight is, therefore:

$$W_o = (1.4)(188)(28) = 7369.6 \ tonnes$$

### 1.1.4 Total Lightship

The total lightship weight is the sum of the structural, machinery, and outfit weights, as shown in the following table. Watson recommends a margin of 3%; however, given the vessel's unique hybrid propulsion system and podded propulsors, a 5% margin was instead used.

| Ws (tonnes)             | 10,160.0 |
|-------------------------|----------|
| W <sub>M</sub> (tonnes) | 1730.6   |
| W <sub>o</sub> (tonnes) | 7369.6   |
| 5% Margin               | 963.0    |
| Lightship Weight        | 20,223.0 |

### 1.1.5 Centers Estimates

The VCG of the structural weight is divided into three groups – hull, superstructure, and deckhouse. The VCG of the hull is estimated using the equation:

$$VCG_{hull} = 0.01D \left[ 46.6 + 0.135(0.81 - C_B) \left(\frac{L}{D}\right)^2 \right] = 8.4m$$

The VCG of the superstructure and deckhouse were assumed to be 26m and 33m, respectively. These values were obtained from the AutoCAD model of the vessel.

The VCG of the machinery is estimated using the equation:

$$VCG_M = h_{db} + 0.35(D' - h_{db}) = 2 + 0.35(8 - 2) = 4.1$$

The VCG of the outfitting is estimated with the equation:

$$VCG_o = O + 1.25 + 0.01(L - 125) = 18.88$$

And the LCG of the hull was estimated with the equation:

 $LCG_{hull} = -0.15 + LCB = 96.9m$ 

The LCG of the superstructure and deckhouse was estimated to be 94.5m and 113m, respectively, using the AutoCAD drawings of the vessel.

The LCG of the machinery was assumed to be at the aft end of the main engines, which is 54.5m forward of the origin point.

The outfit LCG is estimated using the following equation:

$$LCG_{o} = \frac{0.25W_{o}(LCG_{m}) + 0.375W_{o}(LCG_{dh}) + 0.375W_{o}(LCG_{midship})}{W_{o}} = 92.1m$$

Due to the symmetry of the vessel, the TCG for all groups was assumed to be 0.

A summary of the lightship centres is provided in the table below.

| Group LCG (m) TCG (m) VCG (m | ) |
|------------------------------|---|
|------------------------------|---|

| Hull           | 96.9  | 0 | 84    |
|----------------|-------|---|-------|
|                | 04.5  | 0 | 26.0  |
| Superstructure | 94.5  | 0 | 26.0  |
| Deckhouse      | 114.0 | 0 | 33.0  |
| Outfit         | 92.1  | 0 | 18.88 |
| Machinery      | 54.5  | 0 | 4.1   |
| Net            | 91.1  | 0 | 13.34 |

# 1.2 DEADWEIGHT ESTIMATE

### 1.2.1 People, Water, and Provisions

Deadweight estimates were also obtained from SNAME's Ship Design and Construction Volume 1. The centres for freshwater were determined from the tank arrangement. The centres for the provisions were set to be the same as for the passengers. This was done because many of the provisions would be distributed throughout the passenger areas and in the store room behind the cafeteria galley. Many stores are also located lower in this ship, so assuming a VCG higher in the ship adds conservatism. The centres for passenger/crew and effects were assumed to be 1.0m above the deck where their cabins are located. The table below summarizes the recommended weights for people, water, and provisions.

| Component                 | Weight (tonnes) | Total Weight<br>(tonnes) | LCG (m) | TCG (m) | VCG (m) |
|---------------------------|-----------------|--------------------------|---------|---------|---------|
| Freshwater                | 0.17/person/day | 387                      | 134.6   | 0       | 5       |
| Crew and Effects          | 0.17/person     | 17                       | 119.4   | 0       | 32      |
| Passengers and<br>Effects | 0.17/person     | 170                      | 113.3   | 0       | 26.9    |
| Provisions                | 0.01/person/day | 22                       | 113.3   | 0       | 26.9    |

### 1.2.2 Vehicle Weights

An average passenger vehicle weight of 2000kg was assumed based on a 2020 study of automotive trends conducted by the U.S. Environmental Protection Agency and anticipated vehicle weight growth.

The weight of live and drop units was based on the truck weight limits defined in Newfoundland and Labrador Regulation 105/14 Vehicle Regulations and the equivalent regulations for Nova Scotia. A conservative 35,000kg was assumed to be the average weight of a live unit, and 25,000kg was assumed to be the average weight of a drop unit.





# **APPENDIX F – HYDROSTATICS REPORT**





| Draft | Volume   | Displ FW | Displ.   | LCB    | VCB   | ТСВ |
|-------|----------|----------|----------|--------|-------|-----|
| m     | m³       | t        | t        | m      | m     | m   |
| 5.0   | 16732.47 | 16732.47 | 17150.78 | 98.891 | 2.746 | 0   |
| 5.1   | 17139.49 | 17139.49 | 17567.98 | 98.816 | 2.801 | 0   |
| 5.2   | 17548.52 | 17548.52 | 17987.23 | 98.74  | 2.855 | 0   |
| 5.3   | 17959.76 | 17959.76 | 18408.75 | 98.659 | 2.91  | 0   |
| 5.4   | 18373.22 | 18373.22 | 18832.55 | 98.575 | 2.965 | 0   |
| 5.5   | 18788.89 | 18788.89 | 19258.61 | 98.488 | 3.02  | 0   |
| 5.6   | 19206.91 | 19206.91 | 19687.08 | 98.396 | 3.075 | 0   |
| 5.7   | 19627.31 | 19627.31 | 20118    | 98.3   | 3.13  | 0   |
| 5.8   | 20050.16 | 20050.16 | 20551.41 | 98.2   | 3.186 | 0   |
| 5.9   | 20475.53 | 20475.53 | 20987.42 | 98.095 | 3.241 | 0   |
| 6.0   | 20903.41 | 20903.41 | 21425.99 | 97.985 | 3.296 | 0   |
| 6.1   | 21333.88 | 21333.88 | 21867.23 | 97.87  | 3.352 | 0   |
| 6.2   | 21767.06 | 21767.06 | 22311.24 | 97.75  | 3.408 | 0   |
| 6.3   | 22203.02 | 22203.02 | 22758.1  | 97.624 | 3.463 | 0   |
| 6.4   | 22641.86 | 22641.86 | 23207.91 | 97.492 | 3.519 | 0   |
| 6.5   | 23083.9  | 23083.9  | 23661    | 97.352 | 3.576 | 0   |
| 6.6   | 23529.36 | 23529.36 | 24117.59 | 97.205 | 3.632 | 0   |
| 6.7   | 23978.67 | 23978.67 | 24578.13 | 97.051 | 3.688 | 0   |
| 6.8   | 24432    | 24432    | 25042.8  | 96.89  | 3.745 | 0   |
| 6.9   | 24889.62 | 24889.62 | 25511.86 | 96.721 | 3.802 | 0   |
| 7.0   | 25352.13 | 25352.13 | 25985.94 | 96.543 | 3.86  | 0   |
| 7.1   | 25820.03 | 25820.03 | 26465.53 | 96.353 | 3.918 | 0   |
| 7.2   | 26289.34 | 26289.34 | 26946.58 | 96.167 | 3.975 | 0   |
| 7.3   | 26759.15 | 26759.15 | 27428.13 | 95.989 | 4.033 | 0   |
| 7.4   | 27229.39 | 27229.39 | 27910.12 | 95.817 | 4.09  | 0   |
| 7.5   | 27700.03 | 27700.03 | 28392.53 | 95.651 | 4.147 | 0   |
| 7.6   | 28171.05 | 28171.05 | 28875.33 | 95.493 | 4.204 | 0   |
| 7.7   | 28642.43 | 28642.43 | 29358.49 | 95.34  | 4.261 | 0   |
| 7.8   | 29114.19 | 29114.19 | 29842.04 | 95.193 | 4.317 | 0   |
| 7.9   | 29586.28 | 29586.28 | 30325.94 | 95.052 | 4.374 | 0   |
| 8.0   | 30058.29 | 30058.29 | 30809.75 | 94.917 | 4.43  | 0   |





| Draft | Aw                | LCF      | KMt    | KMI     | МСТ     | TpCm     |
|-------|-------------------|----------|--------|---------|---------|----------|
| m     | m²                | m        | m      | m       | t*m     | tonne/cm |
| 5     | <b>.0</b> 4060.83 | 3 95.882 | 16.609 | 472.061 | 394.565 | 41.624   |
| 5     | <b>.1</b> 4081.0  | 9 95.645 | 16.421 | 467.072 | 399.819 | 41.831   |
| 5     | <b>.2</b> 4102.24 | 4 95.38  | 16.244 | 462.587 | 405.358 | 42.048   |
| 5     | <b>.3</b> 4124.42 | 2 95.085 | 16.08  | 458.561 | 411.175 | 42.275   |
| 5     | <b>.4</b> 4146.5  | 94.778   | 15.927 | 454.667 | 416.995 | 42.502   |
| 5     | <b>.5</b> 4169.02 | 2 94.47  | 15.783 | 451.104 | 423.013 | 42.732   |
| 5     | <b>.6</b> 4193.0  | 8 94.119 | 15.652 | 448.109 | 429.481 | 42.979   |
| 5     | <b>.7</b> 4217.19 | 9 93.742 | 15.531 | 445.18  | 435.939 | 43.226   |
| 5     | <b>.8</b> 4241.8  | 9 93.36  | 15.418 | 442.585 | 442.661 | 43.479   |
| 5     | <b>.9</b> 4267.1  | 1 92.948 | 15.316 | 440.235 | 449.577 | 43.738   |
| 6     | <b>.0</b> 4292.5  | 6 92.521 | 15.222 | 437.984 | 456.55  | 43.999   |
| 6     | <b>.1</b> 4318.73 | 3 92.071 | 15.138 | 436.046 | 463.814 | 44.267   |
| 6     | <b>.2</b> 4346.4  | 5 91.584 | 15.065 | 434.605 | 471.596 | 44.551   |
| 6     | <b>.3</b> 4374.02 | 2 91.083 | 14.996 | 433.192 | 479.403 | 44.834   |
| 6     | <b>.4</b> 4405.03 | 3 90.507 | 14.94  | 432.72  | 488.277 | 45.152   |
| 6     | <b>.5</b> 4436.9  | 6 89.915 | 14.89  | 432.591 | 497.595 | 45.479   |
| 6     | <b>.6</b> 4474.14 | 4 89.299 | 14.848 | 434.378 | 509.244 | 45.86    |
| 6     | <b>.7</b> 4513.43 | 3 88.683 | 14.812 | 436.929 | 521.973 | 46.263   |
| 6     | <b>.8</b> 4554.52 | 2 88.046 | 14.78  | 440.056 | 535.61  | 46.684   |
| 6     | <b>.9</b> 4599.6  | 87.349   | 14.756 | 444.379 | 550.977 | 47.146   |
| 7     | <b>.0</b> 4653.8  | 8 86.488 | 14.753 | 451.273 | 569.924 | 47.702   |
| 7     | <b>.1</b> 4690.7  | 85.943   | 14.715 | 453.314 | 583.015 | 48.08    |
| 7     | <b>.2</b> 4696.1  | 9 85.969 | 14.602 | 446.835 | 584.979 | 48.136   |
| 7     | <b>.3</b> 4700.6  | 7 86.015 | 14.487 | 440.347 | 586.631 | 48.182   |
| 7     | <b>.4</b> 4705.0  | 5 86.073 | 14.376 | 434.054 | 588.252 | 48.227   |
| 7     | <b>.5</b> 4708.92 | 2 86.132 | 14.268 | 427.856 | 589.714 | 48.266   |
| 7     | <b>.6</b> 4712.6  | 1 86.193 | 14.164 | 421.818 | 591.115 | 48.304   |
| 7     | <b>.7</b> 4716.2  | 8 86.256 | 14.064 | 415.973 | 592.513 | 48.342   |
| 7     | <b>.8</b> 4719.92 | 2 86.319 | 13.97  | 410.303 | 593.894 | 48.379   |
| 7     | <b>.9</b> 4722.0  | 5 86.409 | 13.876 | 404.443 | 594.729 | 48.401   |
| 8     | <b>.0</b> 4719.1  | 6 86.59  | 13.776 | 397.555 | 593.73  | 48.371   |





# APPENDIX G – LINES PLAN



| 1 | <b>^</b> | 0        | 1  | F        |  |
|---|----------|----------|----|----------|--|
|   | - /      |          | /. | <b>n</b> |  |
|   |          | -1       | 4  |          |  |
| • | <u> </u> | <b>U</b> |    | 0        |  |
|   |          |          |    |          |  |





# **APPENDIX H – RESISTANCE AND PROPULSION REPORTS**

Propulsion 7 Feb 2023 01:41 PM HydroComp NavCad 2019 [Premium]

Project ID Description Atlantic Puffin File name untitled.hcnc

#### **Analysis parameters**

| Hull-propulsor interaction |                   | System analysis      |                 |
|----------------------------|-------------------|----------------------|-----------------|
| Technique:                 | [Calc] Prediction | Cavitation criteria: | 10% cav line    |
| Prediction:                | Holtrop           | Analysis type:       | Free run        |
| Reference ship:            |                   | CPP method:          |                 |
| Max prop diam:             | 4750.0 mm         | Engine RPM:          |                 |
| Corrections                |                   | Mass multiplier:     |                 |
| Viscous scale corr:        | [On] Standard     | RPM constraint:      |                 |
| Rudder location:           | Behind propeller  | Limit [RPM/s]:       |                 |
| Friction line:             | ITTC-57           | Water properties     |                 |
| Hull form factor:          | 1.181             | Water type:          | Salt            |
| Corr allowance:            | ITTC-78 (v2008)   | Density:             | 1026.00 kg/m3   |
| Roughness [mm]:            | [Off] 0.00        | Viscosity:           | 1.18920e-6 m2/s |
| Ducted prop corr:          | [Off]             |                      |                 |
| Tunnel stern corr:         | [Off]             |                      |                 |

#### Prediction method check [Holtrop]

| Parameters | FN [design] | CP        | LWL/BWL    | BWL/T     |
|------------|-------------|-----------|------------|-----------|
| Value      | 0.17        | 0.70      | 6.72       | 4.18      |
| Range      | 0.06.0.80   | 0.55…0.85 | 3.90.14.90 | 2.10.4.00 |

#### Prediction results [System]

|           | HULL-PROPULSOR |        |            |         |          | ENGINE  | FUEL PER ENGINE |        |       |
|-----------|----------------|--------|------------|---------|----------|---------|-----------------|--------|-------|
| SPEED     | PETOTAL        | WET    | тир        | EEED    | RPMENG   | PBENG   | LOADENG         | MDO    | LNG   |
| [kt]      | [kW]           |        | IND        | EFFN    | [RPM]    | [kW]    | [% rated]       | [t/h]  | [t/h] |
| 13.00     | 1761.6         | 0.1440 | 0.1553     | 0.9907  | 99       | 1362.0  | 0.0             |        |       |
| + 14.00 + | 2229.2         | 0.1439 | 0.1553     | 0.9907  | 106      | 1724.4  | 0.0             |        |       |
| 15.00     | 2800.4         | 0.1438 | 0.1553     | 0.9907  | 115      | 2167.9  | 0.0             |        |       |
| 16.00     | 3498.9         | 0.1437 | 0.1553     | 0.9907  | 123      | 2711.7  | 0.0             |        |       |
| 17.00     | 4351.3         | 0.1436 | 0.1553     | 0.9907  | 132      | 3377.8  | 0.0             |        |       |
| 18.00     | 5390.2         | 0.1435 | 0.1553     | 0.9907  | 141      | 4193.7  | 0.0             |        |       |
| 19.00     | 6661.5         | 0.1435 | 0.1553     | 0.9907  | 150      | 5198.7  | 0.0             |        |       |
| 20.00     | 8161.7         | 0.1434 | 0.1553     | 0.9907  | 159      | 6391.9  | 0.0             |        |       |
| 21.00     | 9887.5         | 0.1433 | 0.1553     | 0.9907  | 169      | 7772.0  | 0.0             |        |       |
| 22.00     | 12001.4        | 0.1432 | 0.1553     | 0.9907  | 179      | 9479.8  | 0.0             |        |       |
|           | CO2 PER ENGINE |        | EFFICIENCY |         |          | THRUST  |                 |        |       |
| SPEED     | MDO            | LNG    | FFFO       | EEEOA   | MERIT    | THRPROP | DELTHR          |        |       |
| [kt]      | [t/h]          | [t/h]  | LITO       | LITOA   |          | [kN]    | [kN]            |        |       |
| 13.00     |                |        | 0.6750     | 0.6467  | 0.34527  | 155.91  | 263.40          |        |       |
| + 14.00 + |                |        | 0.6747     | 0.6464  | 0.34737  | 183.20  | 309.52          |        |       |
| 15.00     |                |        | 0.6743     | 0.6459  | 0.3508   | 214.80  | 362.90          |        |       |
| 16.00     |                |        | 0.6736     | 0.6452  | 0.35553  | 251.61  | 425.09          |        |       |
| 17.00     |                |        | 0.6726     | 0.6441  | 0.36142  | 294.50  | 497.54          |        |       |
| 18.00     |                |        | 0.6711     | 0.6427  | 0.36838  | 344.54  | 582.10          |        |       |
| 19.00     |                |        | 0.6691     | 0.6407  | 0.37647  | 403.39  | 681.52          |        |       |
| 20.00     |                |        | 0.6669     | 0.6384  | 0.3845   | 469.53  | 793.26          |        |       |
| 21.00     |                |        | 0.6645     | 0.6361  | 0.39189  | 541.73  | 915.23          |        |       |
| 22.00     |                |        | 0.6613     | 0.6330  | 0.40069  | 627.66  | 1060.40         |        |       |
|           |                |        |            | POWER D | DELIVERY |         |                 |        |       |
| SPEED     | RPMPROP        | QPROP  | QENG       | PDPROP  | PSPROP   | PSTOTAL | PBTOTAL         | TRANSP |       |
| [kt]      | [RPM]          | [kN·m] | [kN·m]     | [kW]    | [kW]     | [kW]    | [kW]            | THANGI |       |
| 13.00     | 99             | 128.06 | 128.06     | 1334.8  | 1362.0   | 2724.0  | 2724.0          | 591.8  |       |
| + 14.00 + | 106            | 150.16 | 150.16     | 1689.9  | 1724.4   | 3448.8  | 3448.8          | 503.4  |       |
| 15.00     | 115            | 175.45 | 175.45     | 2124.5  | 2167.9   | 4335.7  | 4335.7          | 429.0  |       |
| 16.00     | 123            | 204.55 | 204.55     | 2657.5  | 2711.7   | 5423.4  | 5423.4          | 365.8  |       |
| 17.00     | 132            | 238.05 | 238.05     | 3310.3  | 3377.8   | 6755.6  | 6755.6          | 312.0  |       |
| 18.00     | 141            | 276.67 | 276.67     | 4109.8  | 4193.7   | 8387.4  | 8387.4          | 266.1  |       |
| 19.00     | 150            | 321.53 | 321.53     | 5094.7  | 5198.7   | 10397.3 | 10397.3         | 226.6  |       |
| 20.00     | 159            | 371.59 | 371.59     | 6264.1  | 6391.9   | 12783.9 | 12783.9         | 194.0  |       |
| 21.00     | 169            | 425.99 | 425.99     | 7616.6  | 7772.0   | 15544.0 | 15544.0         | 167.5  |       |
| 22.00     | 179            | 489.94 | 489.94     | 9290.2  | 9479.8   | 18959.7 | 18959.7         | 143.9  |       |

Report ID20230207-1341

HydroComp NavCad 2019 [Premium] 19.03.0080.9010.CF-P6-RQ

Propulsion 7 Feb 2023 01:41 PM

HydroComp NavCad 2019 [Premium]

#### Prediction results [Propulsor]

Project ID Atlantic Puffin Description File name untitled.hcnc

|               |                 |        |          |                   | CAVITATION |                |         |               |                 |
|---------------|-----------------|--------|----------|-------------------|------------|----------------|---------|---------------|-----------------|
| SPEED<br>[kt] | SIGMAV          | SIGMAN | SIGMA07R | TIPSPEED<br>[m/s] | MINBAR     | PRESS<br>[kPa] | CAVAVG  | CAVMAX<br>[%] | PITCHFC<br>[mm] |
| 13.00         | 8.45            | 4.54   | 0.85     | 24.52             | 0.172      | 13.54          | 2.0     | 2.0           | 3891.5          |
| + 14.00 +     | 7.28            | 3.90   | 0.73     | 26.48             | 0.188      | 15.91          | 2.0     | 2.0           | 3886.5          |
| 15.00         | 6.34            | 3.37   | 0.63     | 28.49             | 0.207      | 18.65          | 2.0     | 2.0           | 3878.4          |
| 16.00         | 5.57            | 2.92   | 0.55     | 30.57             | 0.229      | 21.84          | 2.0     | 2.0           | 3867.2          |
| 17.00         | 4.93            | 2.55   | 0.48     | 32.72             | 0.254      | 25.57          | 2.0     | 2.0           | 3853.2          |
| 18.00         | 4.40            | 2.24   | 0.42     | 34.95             | 0.285      | 29.91          | 2.0     | 2.0           | 3836.4          |
| 19.00         | 3.95            | 1.97   | 0.37     | 37.28             | 0.322      | 35.02          | 2.0     | 2.0           | 3816.9          |
| 20.00         | 3.56            | 1.74   | 0.33     | 39.66             | 0.364      | 40.76          | 2.0     | 2.0           | 3797.2          |
| 21.00         | 3.23            | 1.54   | 0.29     | 42.07             | 0.411      | 47.03          | 2.8     | 2.8           | 3779.0          |
| 22.00         | 2.94            | 1.37   | 0.26     | 44.61             | 0.470      | 54.49          | 4.1     | 4.1           | 3757.2          |
|               | PROPULSOR COEFS |        |          |                   |            |                |         |               |                 |
| SPEED<br>[kt] | J               | KT     | KQ       | KT/J2             | KQ/J3      | СТН            | СР      | RNPROP        |                 |
| 13.00         | 0.7334          | 0.1105 | 0.01911  | 0.20551           | 0.048458   | 0.52333        | 0.78262 | 2.70e7        |                 |
| + 14.00 +     | 0.7315          | 0.1114 | 0.01922  | 0.20817           | 0.049102   | 0.53009        | 0.79302 | 2.92e7        |                 |
| 15.00         | 0.7285          | 0.1128 | 0.01940  | 0.21256           | 0.05017    | 0.54129        | 0.81028 | 3.14e7        |                 |
| 16.00         | 0.7244          | 0.1148 | 0.01965  | 0.21879           | 0.051693   | 0.55714        | 0.83487 | 3.36e7        |                 |
| 17.00         | 0.7191          | 0.1173 | 0.01996  | 0.22679           | 0.053667   | 0.57752        | 0.86675 | 3.60e7        |                 |
| 18.00         | 0.7129          | 0.1203 | 0.02033  | 0.23663           | 0.056114   | 0.60256        | 0.90627 | 3.84e7        |                 |
| 19.00         | 0.7055          | 0.1237 | 0.02076  | 0.2486            | 0.05913    | 0.63306        | 0.95498 | 4.09e7        |                 |
| 20.00         | 0.6981          | 0.1272 | 0.02120  | 0.26111           | 0.062317   | 0.6649         | 1.0065  | 4.35e7        |                 |
| 21.00         | 0.6912          | 0.1305 | 0.02161  | 0.2732            | 0.065439   | 0.69571        | 1.0569  | 4.61e7        |                 |
| 22.00         | 0.6828          | 0.1344 | 0.02209  | 0.28837           | 0.069406   | 0.73434        | 1.1209  | 4.88e7        |                 |

Report ID20230207-1341

HydroComp NavCad 2019 [Premium] 19.03.0080.9010.CF-P6-RQ
### Propulsion 7 Feb 2023 01:41 PM

7 Feb 2023 01:41 PM HydroComp NavCad 2019 [Premium]

### Hull data

Project ID Atlantic Puffin Description File name untitled.hcnc

| General                                         | Planing                 |                               |
|-------------------------------------------------|-------------------------|-------------------------------|
| Configuration: Monohull                         | Proj chine length:      | 0.000 m                       |
| Chine type: Round/multiple                      | Proj bottom area:       | 0.000 m2                      |
| Length on WL: 188.093 m                         | LCG fwd TR:             | [XCG/LP 0.000] <b>0.000 m</b> |
| Max beam on WL: [LWL/BWL 6.718] <b>28.000 m</b> | VCG below WL:           | 0.000 m                       |
| Max molded draft: [BWL/T 4.179] 6.700 m         | Aft station (fwd TR):   | 0.000 m                       |
| Displacement: [CB 0.679] 24578.14 t             | Deadrise:               | 0.00 deg                      |
| Wetted surface: [CS 2.864] 6080.390 m2          | Chine beam:             | 0.000 m                       |
| ITTC-78 (CT)                                    | Chine ht below WL:      | 0.000 m                       |
| LCB fwd TR: [XCB/LWL 0.516] 97.051 m            | Fwd station (fwd TR):   | 0.000 m                       |
| LCF fwd TR: [XCF/LWL 0.000] 0.000 m             | Deadrise:               | 0.00 deg                      |
| Max section area: [CX 0.972] 182.270 m2         | Chine beam:             | 0.000 m                       |
| Waterplane area: [CWP 0.857] <b>4513.430 m2</b> | Chine ht below WL:      | 0.000 m                       |
| Bulb section area: 12.670 m2                    | Propulsor type:         | Propeller                     |
| Bulb ctr below WL: 2.000 m                      | Max prop diameter:      | 4750.0 mm                     |
| Bulb nose fwd TR: 200.000 m                     | Shaft angle to WL:      | 0.00 deg                      |
| Imm transom area: [ATR/AX 0.000] 0.000 m2       | Position fwd TR:        | 0.000 m                       |
| Transom beam WL: [BTR/BWL 1.000] 28.000 m       | Position below WL:      | 0.000 m                       |
| Transom immersion: [TTR/T 0.000] 0.000 m        | Transom lift device:    | Flap                          |
| Half entrance angle: 20.95 deg                  | Device count:           | 0                             |
| Bow shape factor: [AVG flow] 0.0                | Span:                   | 0.000 m                       |
| Stern shape factor: [AVG flow] 0.0              | Chord length:           | 0.000 m                       |
|                                                 | Deflection angle:       | 0.00 deg                      |
|                                                 | Tow point fwd TR:       | 0.000 m                       |
|                                                 | Tow point below WL:     | 0.000 m                       |
|                                                 | Foil assist (planing)   |                               |
|                                                 | Foil count:             | 0                             |
|                                                 | Total planform area:    | 0.000 m2                      |
|                                                 | LCE fwd TR:             | 0.000 m                       |
|                                                 | VCE below WL:           | 0.000 m                       |
|                                                 | Lift-drag ratio:        | 0.0                           |
|                                                 | Lift fraction (design): | 0.00                          |
|                                                 | Design speed:           | 0.00 kt                       |

Propulsor data

| Propulsor                         |                  | Propeller options            |                                            |  |  |
|-----------------------------------|------------------|------------------------------|--------------------------------------------|--|--|
| Count:                            | 2                |                              | 0#                                         |  |  |
| Dress deset trace                 |                  | Oblique aligie coll.         |                                            |  |  |
| Propulsor type:                   | Propeller series | Shaft angle to WL:           | 0.00 deg                                   |  |  |
| Propeller type:                   | FPP              | Added rise of run:           | 0.00 deg                                   |  |  |
| Propeller series:                 | B Series         | Propeller cup:               | 0.0 mm                                     |  |  |
| Propeller sizing:                 | No sizing        | KTKQ corrections:            | Custom                                     |  |  |
| Reference prop:                   |                  | Scale correction:            | None                                       |  |  |
| Blade count:                      | 4                | KT multiplier:               | 1.000                                      |  |  |
| Expanded area ratio:              | 0.6500           | KQ multiplier:               | 1.000                                      |  |  |
| Propeller diameter:               | 4750.0 mm        | Blade T/C [0.7R]:            | 0.00                                       |  |  |
| Propeller mean pitch: [P/D 0.8947 | ] 4250.0 mm      | Roughness:                   | 0.00 mm                                    |  |  |
| Hub immersion:                    | 4211.0 mm        | Cav breakdown:               | Off                                        |  |  |
| Engine/gear                       |                  | Design condition [No sizing] |                                            |  |  |
| Drive line:                       | Standard         | Max prop diam:               |                                            |  |  |
| Gear input:                       | Single engine    | Design speed:                |                                            |  |  |
| Engine data:                      |                  | Reference thrust:            |                                            |  |  |
| Rated RPM:                        | 0 RPM            | Design point:                |                                            |  |  |
| Rated power:                      | 0.0 kW           | Reference RPM:               |                                            |  |  |
| Primary fuel:                     | MDO              | Design point:                |                                            |  |  |
| Secondary fuel:                   | LNG              |                              |                                            |  |  |
| Gear efficiency:                  | 1.000            |                              |                                            |  |  |
| Load correction:                  | Off              |                              |                                            |  |  |
| Gear ratio:                       | 1.000            |                              |                                            |  |  |
| Shaft efficiency:                 | 0.980            |                              |                                            |  |  |
| Report ID20230207-1341            |                  | -<br>HydroComp NavC          | ad 2019 [Premium] 19.03.0080.9010.CF-P6-RQ |  |  |

Symbols and values

Project ID Atlantic Puffin Description File name untitled.hcnc

| SPEED =                            | Vessel speed                                                                                                                                                                                                                                                        |
|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PETOTAL =                          | Total vessel effective power                                                                                                                                                                                                                                        |
| WFT =                              | Taylor wake fraction coefficient                                                                                                                                                                                                                                    |
| THD =                              | Thrust deduction coefficient                                                                                                                                                                                                                                        |
| EFFR =                             | Relative-rotative efficiency                                                                                                                                                                                                                                        |
| RPMENG =                           | Engine RPM                                                                                                                                                                                                                                                          |
| PBENG =                            | Brake power per engine                                                                                                                                                                                                                                              |
| VOLRATE =                          | Volumetric fuel rate total Primary                                                                                                                                                                                                                                  |
| LOADENG =                          | Engine load as a percentage of engine rated power                                                                                                                                                                                                                   |
| RPMPROP =                          | Propulsor RPM                                                                                                                                                                                                                                                       |
| QPROP =                            | Propulsor open water torque                                                                                                                                                                                                                                         |
| QENG =                             | Engine torque                                                                                                                                                                                                                                                       |
| PDPROP =                           | Delivered power per propulsor                                                                                                                                                                                                                                       |
| PSPROP =                           | Shaft power per propulsor                                                                                                                                                                                                                                           |
| PSTOTAL =                          | Total vessel shaft power                                                                                                                                                                                                                                            |
| PBTOTAL =                          | Total vessel brake power                                                                                                                                                                                                                                            |
| TRANSP =                           | Transport factor                                                                                                                                                                                                                                                    |
| EFFO =                             | Propulsor open-water efficiency                                                                                                                                                                                                                                     |
| EFFG =                             | Gear efficiency (load corrected)                                                                                                                                                                                                                                    |
| EFFOA =                            | Overall propulsion efficiency [=PETOTAL/PSTOTAL]                                                                                                                                                                                                                    |
| MERIT =                            | Propulsor merit coefficient                                                                                                                                                                                                                                         |
| THRPROP =                          | Open-water thrust per propulsor                                                                                                                                                                                                                                     |
| DELTHR =                           | Total vessel delivered thrust                                                                                                                                                                                                                                       |
| J =                                | Propulsor advance coefficient                                                                                                                                                                                                                                       |
| KT =                               | Propulsor thrust coefficient [horizontal, if in oblique flow]                                                                                                                                                                                                       |
| KQ =                               | Propulsor torque coefficient                                                                                                                                                                                                                                        |
| KT/J2 =                            | Propulsor thrust loading ratio                                                                                                                                                                                                                                      |
| KQ/J3 =                            | Propulsor torque loading ratio                                                                                                                                                                                                                                      |
| CTH =                              | Horizontal component of bare-hull resistance coefficient                                                                                                                                                                                                            |
| CP =                               | Propulsor thrust loading coefficient                                                                                                                                                                                                                                |
| RNPROP =                           | Propeller Reynolds number at 0.7R                                                                                                                                                                                                                                   |
| SIGMAV =                           | Cavitation number of propeller by vessel speed                                                                                                                                                                                                                      |
| SIGMAN =                           | Cavitation number of propeller by RPM                                                                                                                                                                                                                               |
| SIGMA07R =                         | Cavitation number of blade section at 0.7R                                                                                                                                                                                                                          |
| TIPSPEED =                         | Propeller circumferential tip speed                                                                                                                                                                                                                                 |
| MINBAR =                           | Minimum expanded blade area ratio recommended by selected cavitation criteria                                                                                                                                                                                       |
| PRESS =                            | Average propeller loading pressure                                                                                                                                                                                                                                  |
| CAVAVG =                           | Average predicted back cavitation percentage                                                                                                                                                                                                                        |
| CAVMAX =                           | Peak predicted back cavitation percentage [if in oblique flow]                                                                                                                                                                                                      |
| PITCHFC =                          | Minimum recommended pitch to avoid face cavitation                                                                                                                                                                                                                  |
| + =<br>* =<br>! =<br>!! =<br>!!! = | Design speed indicator<br>Exceeds recommended parameter limit<br>Exceeds recommended cavitation criteria [warning]<br>Substantially exceeds recommended cavitation criteria [critical]<br>Thrust breakdown is indicated [severe]<br>Insignificant or not applicable |

Report ID20230207-1341

HydroComp NavCad 2019 [Premium] 19.03.0080.9010.CF-P6-RQ

### Resistance

7 Feb 2023 01:47 PM HydroComp NavCad 2019 [Premium] Project ID Atlantic Puffin Description File name **R&P.hcnc** 

#### **Analysis parameters**

| Vessel drag                        | ITTC-78 (CT)      | Added drag       |                   |
|------------------------------------|-------------------|------------------|-------------------|
| Technique:                         | [Calc] Prediction | Appendage:       | [Calc] Percentage |
| Prediction:                        | Holtrop           | Wind:            | [Off]             |
| Reference ship:                    |                   | Seas:            | [Off]             |
| Model LWL:                         |                   | Shallow/channel: | [Off]             |
| Expansion:                         | Custom            | Towed:           | [Off]             |
| Friction line:                     | ITTC-57           | Margin:          | [Off]             |
| Hull form factor:                  | [On] 1.181        | Water properties |                   |
| Speed corr:                        | [On]              | Water type:      | Salt              |
| Spray drag corr:                   | [Off]             | Density:         | 1026.00 kg/m3     |
| Corr allowance:                    | 0.000000          | Viscosity:       | 1.18920e-6 m2/s   |
| Roughness [mm]:                    | [Off]             |                  |                   |
| Corr allowance:<br>Roughness [mm]: | 0.000000<br>[Off] | Viscosity:       | 1.18920e-6 m2/s   |

#### Prediction method check [Holtrop]

| Parameters | FN [design] | CP        | LWL/BWL    | BWL/T     | Lambda    |
|------------|-------------|-----------|------------|-----------|-----------|
| Value      | 0.17        | 0.70      | 6.72       | 4.18      | 0.81      |
| Range      | 0.06…0.40   | 0.55…0.85 | 3.90.14.90 | 2.10.4.00 | 0.01.1.07 |

#### **Prediction results**

|               | SPEED   | COEFS    |         |          | ľ       | TTC-78 COEF | S        |          |          |
|---------------|---------|----------|---------|----------|---------|-------------|----------|----------|----------|
| SPEED<br>[kt] | FN      | FV       | RN      | CF       | [CV/CF] | CR          | dCF      | CA       | СТ       |
| 13.00         | 0.156   | 0.398    | 1.06e9  | 0.001520 | 1.179   | 0.000096    | 0.000000 | 0.000000 | 0.001888 |
| + 14.00 +     | 0.168   | 0.428    | 1.14e9  | 0.001506 | 1.178   | 0.000139    | 0.000000 | 0.000000 | 0.001913 |
| 15.00         | 0.180   | 0.459    | 1.22e9  | 0.001493 | 1.176   | 0.000197    | 0.000000 | 0.000000 | 0.001954 |
| 16.00         | 0.192   | 0.490    | 1.30e9  | 0.001482 | 1.175   | 0.000271    | 0.000000 | 0.000000 | 0.002011 |
| 17.00         | 0.204   | 0.520    | 1.38e9  | 0.001471 | 1.173   | 0.000361    | 0.000000 | 0.000000 | 0.002085 |
| 18.00         | 0.216   | 0.551    | 1.46e9  | 0.001461 | 1.170   | 0.000468    | 0.000000 | 0.000000 | 0.002176 |
| 19.00         | 0.228   | 0.581    | 1.55e9  | 0.001451 | 1.167   | 0.000594    | 0.000000 | 0.000000 | 0.002287 |
| 20.00         | 0.240   | 0.612    | 1.63e9  | 0.001442 | 1.163   | 0.000725    | 0.000000 | 0.000000 | 0.002402 |
| 21.00         | 0.252   | 0.643    | 1.71e9  | 0.001434 | 1.159   | 0.000853    | 0.000000 | 0.000000 | 0.002514 |
| 22.00         | 0.264   | 0.673    | 1.79e9  | 0.001426 | 1.154   | 0.001009    | 0.000000 | 0.000000 | 0.002654 |
|               |         |          |         | RESIS    | TANCE   |             |          |          |          |
| SPEED         | RBARE   | RAPP     | RWIND   | RSEAS    | RCHAN   | RTOWED      | RMARGIN  | RTOTAL   |          |
| [kt]          | [kN]    | [kN]     | [kN]    | [kN]     | [kN]    | [kN]        | [kN]     | [kN]     |          |
| 13.00         | 263.41  | 0.00     | 0.00    | 0.00     | 0.00    | 0.00        | 0.00     | 263.41   |          |
| + 14.00 +     | 309.52  | 0.00     | 0.00    | 0.00     | 0.00    | 0.00        | 0.00     | 309.52   |          |
| 15.00         | 362.90  | 0.00     | 0.00    | 0.00     | 0.00    | 0.00        | 0.00     | 362.90   |          |
| 16.00         | 425.09  | 0.00     | 0.00    | 0.00     | 0.00    | 0.00        | 0.00     | 425.09   |          |
| 17.00         | 497.55  | 0.00     | 0.00    | 0.00     | 0.00    | 0.00        | 0.00     | 497.55   |          |
| 18.00         | 582.10  | 0.00     | 0.00    | 0.00     | 0.00    | 0.00        | 0.00     | 582.10   |          |
| 19.00         | 681.52  | 0.00     | 0.00    | 0.00     | 0.00    | 0.00        | 0.00     | 681.52   |          |
| 20.00         | 793.26  | 0.00     | 0.00    | 0.00     | 0.00    | 0.00        | 0.00     | 793.26   |          |
| 21.00         | 915.23  | 0.00     | 0.00    | 0.00     | 0.00    | 0.00        | 0.00     | 915.23   |          |
| 22.00         | 1060.40 | 0.00     | 0.00    | 0.00     | 0.00    | 0.00        | 0.00     | 1060.40  |          |
|               | EFFECTI | /E POWER |         | OTHER    |         |             |          |          |          |
| SPEED         | PEBARE  | PETOTAL  | CTLB    | CTLT     | BBAREAN |             |          |          |          |
| [kt]          | [kW]    | [kW]     | OTEN    | OTET     |         |             |          |          |          |
| 13.00         | 1761.6  | 1761.6   | 0.00230 | 0.04507  | 0.00109 |             |          |          |          |
| + 14.00 +     | 2229.2  | 2229.2   | 0.00332 | 0.04566  | 0.00128 |             |          |          |          |
| 15.00         | 2800.4  | 2800.4   | 0.00470 | 0.04664  | 0.00151 |             |          |          |          |
| 16.00         | 3498.9  | 3498.9   | 0.00647 | 0.04802  | 0.00176 |             |          |          |          |
| 17.00         | 4351.3  | 4351.3   | 0.00862 | 0.04978  | 0.00206 |             |          |          |          |
| 18.00         | 5390.2  | 5390.2   | 0.01116 | 0.05195  | 0.00242 |             |          |          |          |
| 19.00         | 6661.5  | 6661.5   | 0.01418 | 0.05459  | 0.00283 |             |          |          |          |
| 20.00         | 8161.7  | 8161.7   | 0.01731 | 0.05735  | 0.00329 |             |          |          |          |
| 21.00         | 9887.5  | 9887.5   | 0.02036 | 0.06001  | 0.00380 |             |          |          |          |
| 22.00         | 12001.4 | 12001.4  | 0.02409 | 0.06335  | 0.00440 |             |          |          |          |

Report ID20230207-1347

HydroComp NavCad 2019 [Premium] 19.03.0080.9010.CF-P6-RQ

## Resistance

7 Feb 2023 01:47 PM HydroComp NavCad 2019 [Premium]

#### Project ID Atlantic Puffin Description File name R&P.hcnc

| Hull data            |                          |               |                         |                               |
|----------------------|--------------------------|---------------|-------------------------|-------------------------------|
| General              |                          |               | Planing                 |                               |
| Configuration:       | М                        | lonohull      | Proj chine length:      | 0.000 m                       |
| Chine type:          | R                        | ound/multiple | Proj bottom area:       | 0.000 m2                      |
| Length on WL:        | 18                       | 88.093 m      | LCG fwd TR:             | [XCG/LP 0.000] <b>0.000 m</b> |
| Max beam on WL:      | [LWL/BWL 6.718] 28       | 8.000 m       | VCG below WL:           | 0.000 m                       |
| Max molded draft:    | [BWL/T 4.179] <b>6.</b>  | .700 m        | Aft station (fwd TR):   | 0.000 m                       |
| Displacement:        | [CB 0.679] <b>2</b> 4    | 4578.14 t     | Deadrise:               | 0.00 deg                      |
| Wetted surface:      | [CS 2.864] <b>6</b> 0    | 080.390 m2    | Chine beam:             | 0.000 m                       |
| ITTC-78 (CT)         |                          |               | Chine ht below WL:      | 0.000 m                       |
| LCB fwd TR:          | [XCB/LWL 0.516] 97       | 7.051 m       | Fwd station (fwd TR):   | 0.000 m                       |
| LCF fwd TR:          | [XCF/LWL 0.000] 0.       | .000 m        | Deadrise:               | 0.00 deg                      |
| Max section area:    | [CX 0.972] <b>18</b>     | 82.270 m2     | Chine beam:             | 0.000 m                       |
| Waterplane area:     | [CWP 0.857] <b>4</b>     | 513.430 m2    | Chine ht below WL:      | 0.000 m                       |
| Bulb section area:   | 12                       | 2.670 m2      | Propulsor type:         | Propeller                     |
| Bulb ctr below WL:   | 2.                       | .000 m        | Max prop diameter:      | 4750.0 mm                     |
| Bulb nose fwd TR:    | 20                       | 00.000 m      | Shaft angle to WL:      | 0.00 deg                      |
| Imm transom area:    | [ATR/AX 0.000] <b>0.</b> | .000 m2       | Position fwd TR:        | 0.000 m                       |
| Transom beam WL:     | [BTR/BWL 1.000] 28       | 8.000 m       | Position below WL:      | 0.000 m                       |
| Transom immersion:   | [TTR/T 0.000] <b>0.</b>  | .000 m        | Transom lift device:    | Flap                          |
| Half entrance angle: | 20                       | 0.95 deg      | Device count:           | 0                             |
| Bow shape factor:    | [AVG flow] <b>0</b> .    | .0            | Span:                   | 0.000 m                       |
| Stern shape factor:  | [AVG flow] <b>0</b> .    | .0            | Chord length:           | 0.000 m                       |
|                      |                          |               | Deflection angle:       | 0.00 deg                      |
|                      |                          |               | Tow point fwd TR:       | 0.000 m                       |
|                      |                          |               | Tow point below WL:     | 0.000 m                       |
|                      |                          |               | Foil assist (planing)   |                               |
|                      |                          |               | Foil count:             | 0                             |
|                      |                          |               | Total planform area:    | 0.000 m2                      |
|                      |                          |               | LCE fwd TR:             | 0.000 m                       |
|                      |                          |               | VCE below WL:           | 0.000 m                       |
|                      |                          |               | Lift-drag ratio:        | 0.0                           |
|                      |                          |               | Lift fraction (design): | 0.00                          |
|                      |                          |               | Design speed:           | 0.00 kt                       |

Report ID20230207-1347

HydroComp NavCad 2019 [Premium] 19.03.0080.9010.CF-P6-RQ

## Resistance

7 Feb 2023 01:47 PM HydroComp NavCad 2019 [Premium] Project ID Atlantic Puffin Description File name R&P.hcnc

#### Appendage data

| General                |                  | Skeg/Keel           |          |
|------------------------|------------------|---------------------|----------|
| Definition:            | Percentage       | Count:              | 0        |
| Percent of hull drag:  | 0.00 %           | Туре:               | Skeg     |
| Planing influence      |                  | Mean length:        | 0.000 m  |
| LCE fwd TR:            | 0.000 m          | Mean width:         | 0.000 m  |
| VCE below WL:          | 0.000 m          | Height aft:         | 0.000 m  |
| Shafting               |                  | Height mid:         | 0.000 m  |
| Count:                 | 2                | Height fwd:         | 0.000 m  |
| Max prop diameter:     | 4750.0 mm        | Projected area:     | 0.000 m2 |
| Shaft angle to WL:     | 0.00 deg         | Wetted surface:     | 0.000 m2 |
| Exposed shaft length:  | 0.000 m          | Stabilizer          |          |
| Shaft diameter:        | 0.000 m          | Count:              | 0        |
| Wetted surface:        | 0.000 m2         | Root chord:         | 0.000 m  |
| Strut bossing length:  | 0.000 m          | Tip chord:          | 0.000 m  |
| Bossing diameter:      | 0.000 m          | Span:               | 0.000 m  |
| Wetted surface:        | 0.000 m2         | T/C ratio:          | 0.000    |
| Hull bossing length:   | 0.000 m          | LE sweep:           | 0.00 deg |
| Bossing diameter:      | 0.000 m          | Wetted surface:     | 0.000 m2 |
| Wetted surface:        | 0.000 m2         | Projected area:     | 0.000 m2 |
| Strut (per shaft line) |                  | Dynamic multiplier: | 1.00     |
| Count:                 | 0                | Bilge keel          |          |
| Root chord:            | 0.000 m          | Count:              | 0        |
| Tip chord:             | 0.000 mm         | Mean length:        | 0.000 m  |
| Span:                  | 0.000 m          | Mean base width:    | 0.000 m  |
| T/C ratio:             | 0.000            | Mean projection:    | 0.000 m  |
| Projected area:        | 0.000 m2         | Wetted surface:     | 0.000 m2 |
| Wetted surface:        | 0.000 m2         | Tunnel thruster     |          |
| Exposed palm depth:    | 0.000 m          | Count:              | 0        |
| Exposed palm width:    | 0.000 m          | Diameter:           | 0.000 m  |
| Rudder                 |                  | Sonar dome          |          |
| Count:                 | 0                | Count:              | 0        |
| Rudder location:       | Behind propeller | Wetted surface:     | 0.000 m2 |
| Туре:                  | Balanced foil    | Miscellaneous       |          |
| Root chord:            | 0.000 m          | Count:              | 0        |
| Tip chord:             | 0.000 m          | Drag area:          | 0.000 m2 |
| Span:                  | 0.000 m          | Drag coef:          | 0.00     |
| T/C ratio:             | 0.000            |                     |          |
| LE sweep:              | 0.00 deg         |                     |          |
| Projected area:        | 0.000 m2         |                     |          |
| Wetted surface:        | 0.000 m2         |                     |          |

#### Environment data

| Wind                   |            | Seas                 |                                                          |
|------------------------|------------|----------------------|----------------------------------------------------------|
| Wind speed:            | 0.00 kt    | Significant wave ht: | 0.000 m                                                  |
| Angle off bow:         | 0.00 deg   | Modal wave period:   | 0.0 sec                                                  |
| Gradient correction:   | Off        | Shallow/channel      |                                                          |
| Exposed hull           |            | Water depth:         | 0.000 m                                                  |
| Transverse area:       | 0.000 m2   | Type:                | Shallow water                                            |
| VCE above WL:          | 0.000 m    | Channel width:       | 0.000 m                                                  |
| Profile area:          | 0.000 m2   | Channel side slope:  | 0.00 deg                                                 |
| Superstructure         |            | Hull girth:          | 0.000 m                                                  |
| Superstructure shape:  | Cargo ship |                      |                                                          |
| Transverse area:       | 0.000 m2   |                      |                                                          |
| VCE above WL:          | 0.000 m    |                      |                                                          |
| Profile area:          | 0.000 m2   |                      |                                                          |
| Report ID20230207-1347 |            | H                    | lydroComp NavCad 2019 [Premium] 19.03.0080.9010.CF-P6-RQ |

Resistance 7 Feb 2023 01:47 PM HydroComp NavCad 2019 [Premium] Project ID Atlantic Puffin Description File name R&P.hcnc

### Symbols and values

| PEBARE<br>PETOTAL                          | = Bare-hull effective power<br>= Total effective power                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RTOWED<br>RMARGIN<br>RTOTAL                | <ul> <li>Additional sharow/chamber resistance</li> <li>Additional towed object resistance</li> <li>Resistance margin</li> <li>Total vessel resistance</li> </ul>                                                                                                                                                                                                      |
| RBARE<br>RAPP<br>RWIND<br>RSEAS            | <ul> <li>Bare-hull resistance</li> <li>Additional appendage resistance</li> <li>Additional wind resistance</li> <li>Additional sea-state resistance</li> <li>Additional seal-state resistance</li> </ul>                                                                                                                                                              |
| RN<br>CF<br>CV/CF<br>CR<br>dCF<br>CA<br>CA | <ul> <li>Reynolds number [LWL]</li> <li>Frictional resistance coefficient</li> <li>Viscous/frictional resistance coefficient ratio [dynamic form factor]</li> <li>Residuary resistance coefficient</li> <li>Added frictional resistance coefficient for roughness</li> <li>Correlation allowance [dynamic]</li> <li>Total bare-hull resistance coefficient</li> </ul> |
| SPEED<br>FN<br>FV                          | <ul> <li>Vessel speed</li> <li>Froude number [LWL]</li> <li>Froude number [VOL]</li> </ul>                                                                                                                                                                                                                                                                            |





## **APPENDIX I – INTACT STABILITY OUTPUTS**

23-03-24 13:10:37 Memorial Univ. of Newfoundland - Educational Use Page 4 GHS 17.50 LIGHTSHIP

|           |    | V        | VEIGHT aı | nd DISPLACEME | NT STATUS | 5      |        |        |
|-----------|----|----------|-----------|---------------|-----------|--------|--------|--------|
|           |    |          | Base      | eline draft:  | 5.733     |        |        |        |
|           |    |          | Trim      | : zero, Heel  | : zero    |        |        |        |
| Part      |    |          |           | Weight(MT)    | LCG       | TCG    | VCG    |        |
| WEIGHT    |    |          |           | 20,223.33     | 98.286f   | 0.001p | 13.340 |        |
|           |    |          | SpGr      | Displ(MT)     | LCB       | TCB    | VCB    | RefHt  |
| HULL      |    |          | 1.025     | 20,223.34     | 98.286f   | 0.001p | 3.154  | -5.733 |
|           |    | Righting | Arms:     |               | 0.000     | 0.000  |        |        |
| Distances | in | METERS   |           |               |           |        |        |        |

RIGHTING ARMS vs HEEL ANGLE LCG = 98.286f TCG = 0.001p VCG = 13.340

|      | Origin     | Degre    | es of    | Displacement     | Righting  | Arms      |        |          |    |
|------|------------|----------|----------|------------------|-----------|-----------|--------|----------|----|
|      | Depth      | -Trim    | Heel     | Weight(MT)       | in Trim   | in Heel-  | > Area | ì        |    |
|      | 5.732      | 0.00     | 0.00     | 20,221           | 0.000     | 0.000     | 0.0000 | )        |    |
|      | 5.638      | 0.03f    | 5.00s    | 20,223           | 0.000     | 0.206     | 0.0090 | )        |    |
|      | 5.406      | 0.10f    | 10.00s   | 20,224           | 0.005a    | 0.423     | 0.0364 | 1        |    |
|      | 5.071      | 0.20f    | 15.00s   | 20,223           | 0.000     | 0.641     | 0.0828 | 3        |    |
|      | 4.635      | 0.30f    | 20.00s   | 20,223           | 0.000     | 0.828     | 0.1471 | L        |    |
|      | 4.069      | 0.42f    | 25.00s   | 20,223           | 0.000     | 0.926     | 0.2243 | 3        |    |
|      | 3.882      | 0.46f    | 26.42s   | 20,223           | 0.003a    | 0.931     | 0.2474 | 1        |    |
|      | 3.355      | 0.56f    | 30.00s   | 20,220           | 0.003f    | 0.899     | 0.3049 | Э        |    |
|      | 2.505      | 0.70f    | 35.00s   | 20,223           | 0.000     | 0.768     | 0.3784 | 1        |    |
|      | 1.536      | 0.85f    | 40.00s   | 20,223           | 0.000     | 0.577     | 0.4375 | 5        |    |
|      | 0.470      | 0.99f    | 45.00s   | 20,223           | 0.004a    | 0.372     | 0.4791 | L        |    |
|      | -0.678     | 1.12f    | 50.00s   | 20,223           | 0.002a    | 0.194     | 0.5036 | 5        |    |
|      | -1.892     | 1.23f    | 55.00s   | 20,216           | 0.002a    | 0.091     | 0.5155 | 5        |    |
|      | -3.148     | 1.32f    | 60.00s   | 20,221           | 0.000     | 0.053     | 0.5213 | 3        |    |
|      | Distance   | s in ME  | TERS     | -Specific Gravit | y = 1.025 | Area      | in mF  | Rad.     |    |
|      |            |          |          |                  |           |           |        |          |    |
| LIM- |            |          | LIGHTS   | SHIP CRITERION   |           | -Min/Max· |        | -Attaine | ed |
| (1)  | Area from  | abs 0.0  | 00 deg t | co 30            | >         | 0.0550    | mRad   | 0.3049   | Ρ  |
| (2)  | Area from  | abs 0.0  | 00 deg t | to 40 or Flood   | >         | 0.0900    | mRad   | 0.4375   | Ρ  |
| (3)  | Area from  | 30 deg ' | to 40 oi | r Flood          | >         | 0.0300    | mRad   | 0.1327   | Ρ  |
| (4)  | GM Upright |          |          |                  | >         | 0.150     | m.     | 2.130    | Ρ  |
| (5)  | Righting A | rm at 3  | 0 deg om | r MaxRA          | >         | 0.200     | m.     | 0.899    | Ρ  |
| (6)  | Absolute A | ngle at  | MaxRA    |                  | >         | 25.00     | deg    | 26.42    | Ρ  |
|      |            | R        | elative  | angles measured  | from 0.0  | 00        |        |          |    |

|                 | V        | VEIGHT ar | d DISPLACEM  | ENT STATU | S        |           |        |
|-----------------|----------|-----------|--------------|-----------|----------|-----------|--------|
| Baseline        | draft: 6 | 5.428 @ 6 | 5.92a, 6.032 | @ 100.96  | a, 5.635 | @ 195.00a |        |
|                 | Trim: Fv | vd 0.79/1 | .88.08, Hee  | l: Port 0 | .01 deg. |           |        |
| Part            |          |           | Weight(MT    | )LCG      | TCG-·    | VCG       |        |
| LIGHT SHIP      |          |           | 20,223.24    | 125.396f  | 0.002p   | 13.340    |        |
| Passengers and  | Effects  |           | 170.00       | 113.300a  | 0.000    | 26.875    |        |
| Crew and Effect | s        |           | 17.00        | 119.400a  | 0.000    | 32.000    |        |
| Passenger Vehic | les      |           | 400.00       | 96.000a   | 0.000    | 12.500    |        |
| Live Units      |          |           | 1,575.00     | 83.500a   | 0.000    | 15.250    |        |
| Drop Units      |          |           | 875.00       | 83.500a   | 0.000    | 15.250    |        |
| Provisions      |          |           | 22.00        | 113.300a  | 0.000    | 26.875    |        |
| Total Fixed     | >        |           | 23,282.24    | 97.463f   | 0.002p   | 13.652    |        |
|                 | Load     | SpGr      | Weight(MT    | )LCG      | TCG-     | VCG       | RefHt  |
| LNG P           | 0.980    | 0.740     | 322.97       | 110.009f  | 7.250p   | 5.692     | -7.969 |
| LNG S           | 0.980    | 0.740     | 322.97       | 110.009f  | 7.250s   | 5.692     | -7.973 |
| DO 1C           | 0.980    | 0.870     | 56.68        | 43.751f   | 0.001    | 3.470     | -4.755 |
| DO 2P           | 0.980    | 0.740     | 64.28        | 68.501f   | 2.500p   | 4.940     | -7.591 |
| DO 2S           | 0.980    | 0.740     | 64.28        | 68.501f   | 2.500s   | 4,940     | -7.592 |
| TW C            | 0.980    | 1.000     | 74.88        | 75.018f   | 0.000    | 1.011     | -1.645 |
| FW P            | 0.980    | 1.000     | 185.34       | 134.589f  | 9.133p   | 4,940     | -7.311 |
| FW S            | 0.980    | 1.000     | 185.34       | 134.589f  | 9.133s   | 4.940     | -7.315 |
| BW P            | 0.100    | 1.025     | 20.60        | 124.863f  | 10.2060  | 2.300     | -2.072 |
| GW S            | 0.100    | 1.025     | 20.60        | 124.863f  | 10.2055  | 2.300     | -2.077 |
| τ.Ο Ρ           | 0.980    | 0.924     | 20.07        | 47.503f   | 3.750p   | 3,470     | -4.739 |
|                 | 0.980    | 0.924     | 20.06        | 47.503f   | 3.750s   | 3.470     | -4.741 |
| DIRTY C         | 0.100    | 1.025     | 3.63         | 49.005f   | 0.003p   | 2.150     | -2.093 |
| SL C            | 0.100    | 0.924     | 4.91         | 46.511f   | 0.003p   | 2.150     | -2.104 |
| BT 1C           | 1.000    | 1.025     | 277.12       | 170.144f  | 0.000    | 1,200     | 20201  |
| SB 1C           | 0.980    | 1.025     | 86.05        | 89.001f   | 0.0045   | 0.992     | -1.585 |
| SB_10<br>SB_2C  | 0.980    | 1.025     | 83.13        | 69.0011   | 0.001p   | 1.026     | -1.671 |
| SC 1P           | 0.980    | 1.025     | 7.83         | 89.001f   | 12,989p  | 2.986     | -3.582 |
| SC_1S           | 0.980    | 1.025     | 7.80         | 89.000f   | 12.181s  | 1.228     | -1.601 |
| SC 2P           | 0.980    | 1.025     | 7.83         | 89.001f   | 12.989p  | 2.986     | -3.582 |
| SC_25           | 0.980    | 1.025     | 7.83         | 89.000f   | 12.990s  | 2.986     | -3.588 |
| SC 3P           | 0.980    | 1.025     | 7.02         | 69.006f   | 12.133p  | 1,280     | -1.681 |
| SC_3S           | 0.980    | 1.025     | 7.02         | 69.006f   | 12.133s  | 1.280     | -1.687 |
| SC 4P           | 0 980    | 1 025     | 7.02         | 69 001f   | 12.984n  | 2 991     | -3 666 |
|                 | 0.980    | 1 025     | 7.78         | 69 001f   | 12.904p  | 2.991     | -3 673 |
| Total Tanks     | >        | 1.025     | 1 873 79     | 112 435f  | 0 0030   | 3 904     | 5.075  |
| Total Weight-   |          |           | 25 156 03    | 98 578f   | 0.003p   | 12 926    |        |
| iotai weight    | -        |           | 20,100.00    | )1CB-     | 0.002p   | 12.920    |        |
| HIIT.T.         |          | 1 025     | 25.158 //    | 98 616F   | 0 004    | 3 773     | -6 457 |
|                 |          |           | 23,130.44    |           |          |           |        |
|                 | Righting | Arme.     |              | 0 001     | 0 001    |           |        |
| Distances in ME | TERS     |           |              |           |          |           |        |
| Distances in ME | IEKS     |           |              |           |          |           |        |

|           |       | RIGHTING | ARMS  | vs  | HEEL  | ANGLE |        |
|-----------|-------|----------|-------|-----|-------|-------|--------|
| Fixed CG: | LCG = | 97.463f  | TCG = | = 0 | .002p | VCG = | 13.652 |

| Origin   | Degre | es of  | Displacement | Righting | Arms     |        |
|----------|-------|--------|--------------|----------|----------|--------|
| Depth-   | Trim  | Heel   | Weight(MT)   | -in Trim | in Heel- | > Area |
| 6.458    | 0.24f | 0.01p  | 25,158       | 0.004a   | 0.001    | 0.0000 |
| 6.458    | 0.24f | 0.00   | 25,158       | 0.004a   | 0.001    | 0.0000 |
| 6.351    | 0.28f | 4.99s  | 25,156       | 0.000    | 0.143    | 0.0063 |
| 6.128    | 0.34f | 9.99s  | 25,156       | 0.002a   | 0.274    | 0.0245 |
| 5.819    | 0.42f | 14.99s | 25,156       | 0.004a   | 0.415    | 0.0545 |
| 5.423    | 0.50f | 19.99s | 25,155       | 0.002a   | 0.572    | 0.0974 |
| 4.920    | 0.59f | 24.99s | 25,154       | 0.003a   | 0.717    | 0.1537 |
| 4.285    | 0.69f | 29.99s | 25,152       | 0.003f   | 0.806    | 0.2206 |
| 3.758    | 0.77f | 33.49s | 25,156       | 0.000    | 0.822    | 0.2706 |
| 3.512    | 0.80f | 34.99s | 25,156       | 0.000    | 0.819    | 0.2920 |
| 2.606    | 0.91f | 39.99s | 25,156       | 0.000    | 0.778    | 0.3621 |
| 1.585    | 1.02f | 44.99s | 25,151       | 0.003a   | 0.723    | 0.4277 |
| 0.465    | 1.11f | 49.99s | 25,151       | 0.000    | 0.694    | 0.4893 |
| -0.731   | 1.20f | 54.99s | 25,155       | 0.002a   | 0.693    | 0.5497 |
| -1.985   | 1.30f | 59.99s | 25,156       | 0.000    | 0.625    | 0.6077 |
| <b>.</b> |       |        |              | 1 005    | -        |        |

Distances in METERS.---Specific Gravity = 1.025.---Area in m.-Rad.

Note: The Center of Gravity shown above is for the Fixed Weight of 23282.24 MT. As the tank load centers shift with heel and trim, the total Center of Gravity varies. The righting arms shown above include the effect of the C.G. variation.

| LIM- | DELL LOAD DEPARTURE STABIL                | ITY        | -Min/Max- |      | Attaine | ed |
|------|-------------------------------------------|------------|-----------|------|---------|----|
| (1)  | Area from abs -0.015 deg to 30            | >          | 0.0550    | mRad | 0.2206  | Ρ  |
| (2)  | Area from abs $-0.015$ deg to 40 or Flood | >          | 0.0900    | mRad | 0.3621  | Ρ  |
| (3)  | Area from 30 deg to 40 or Flood           | >          | 0.0300    | mRad | 0.1415  | Ρ  |
| (4)  | GM Upright                                | >          | 0.150     | m.   | 1.360   | Ρ  |
| (5)  | Righting Arm at 30 deg or MaxRA           | >          | 0.200     | m.   | 0.822   | Ρ  |
| (6)  | Absolute Angle at MaxRA                   | >          | 25.00     | deg  | 33.49   | Ρ  |
|      | Relative angles measured                  | l from 0.0 | 15        |      |         |    |

|                                | WEIGHT a  | and DISPLACEME | NT STATUS            | 5         |           |        |
|--------------------------------|-----------|----------------|----------------------|-----------|-----------|--------|
| Baseline draft                 | : 6.210 @ | 6.92a, 5.644   | @ 100.96a            | a, 5.078  | @ 195.00a |        |
| Trim:                          | Fwd 1.13  | /188.08, Heel  | : Port 0.            | .02 deg.  |           |        |
| Part                           |           | Weight(MT)     | LCG                  | TCG       | VCG       |        |
| LIGHT SHIP                     |           | 20,223.24      | 125.396f             | 0.002p    | 13.340    |        |
| Passengers and Effect          | s         | 170.00         | 113.300a             | 0.000     | 26.875    |        |
| Crew and Effects               |           | 17.00          | 119.400a             | 0.000     | 32.000    |        |
| Passenger Vehicles             |           | 400.00         | 96.000a              | 0.000     | 12.500    |        |
| Live Units                     |           | 1,575.00       | 83.500a              | 0.000     | 15.250    |        |
| Drop Units                     |           | . 875.00       | 83.500a              | 0.000     | 15.250    |        |
| Provisions                     |           | 22.00          | 113.300a             | 0.000     | 26.875    |        |
| Total Fixed                    | >         | 23,282.24      | 97.463f              | 0.002p    | 13.652    |        |
| Load-                          | SpGr-     | Weight(MT)     | LCG                  | TCG       | VCG       | RefHt  |
| LNG P 0.100                    | 0.740     | 32.98          | 110.198f             | 7.251p    | 3.309     | -3.025 |
| LNG S 0.100                    | 0.740     | 32.98          | 110.198f             | 7.249s    | 3.309     | -3.030 |
| DO 1C 0.980                    | 0.870     | 56.68          | 43.751f              | 0.001     | 3.470     | -4.677 |
| DO 2P 0.100                    | 0.740     | 6.56           | 68.508f              | 2.501p    | 2.300     | -2.187 |
| DO 2S 0.100                    | 0.740     | 6.56           | 68.508f              | 2.4995    | 2.300     | -2.189 |
| TW C 0.100                     | 1.000     | 7.64           | 75.259f              | 0.002p    | 0.159     | 0.196  |
| FW P 0.100                     | 1,000     | 18.91          | 134.665f             | 9.127p    | 2.301     | -1.788 |
| FW S 0.100                     | 1,000     | 18.91          | 134.666f             | 9.126s    | 2.301     | -1.794 |
| BW P 0.980                     | 1 025     | 201 84         | 124 813f             | 10 2080   | 4 940     | -7 126 |
| GW S 0.980                     | 1 025     | 201.04         | 124.0131<br>124 813f | 10.200p   | 4 940     | -7 133 |
| LO P 0 100                     | 0 924     | 201.04         | 47 542f              | 3 7500    | 2 150     | -2 013 |
| LO S 0 100                     | 0.924     | 2.05           | 47.542f              | 3 750p    | 2.150     | -2 015 |
|                                | 1 025     | 2.00           | 49 001f              | 0 000     | 3 470     | -4 645 |
|                                | 0 921     | /8 16          | 45.0011<br>46 502f   | 0.000     | 3 470     | -1 660 |
| BT 1C 0.980                    | 1 025     | 271 54         | 170 271f             | 0.000     | 1 1 9 /   | -0.960 |
|                                | 1 025     | 271.54         | 1/0.2/11<br>1/0 000f | 3 555p    | 1 1 1 0   | -1 079 |
|                                | 1 025     | 253.50         | 140.9901<br>148 000f | 3.553p    | 1 1 1 1   | -1.070 |
| SP 1C 0.900                    | 1 025     | 255.45         | 140.9991<br>00 001f  | 0.003     | 1.141     | -1.425 |
| SB_1C 0.900                    | 1.025     | 00.00          | 69.0011              | 0.0035    | 1 026     | -1.425 |
| SE_2C 0.900                    | 1 025     | 7 03           | 09.0021<br>90.001f   | 12 090p   | 2 0 9 6   | -1.547 |
| SC_1P 0.900                    | 1.025     | 7.03           | 09.0011<br>00.001f   | 12.909p   | 2.900     | -3.421 |
| SC_1S 0.980                    | 1.025     | 7.00           | 09.0011<br>00.001f   | 12.1015   | 2 096     | -1.441 |
| SC_2P 0.980                    | 1.025     | 7.03           | 09.0011              | 12.969p   | 2.900     | -3.421 |
| SC_2S 0.980                    | 1.025     | 7.03           | 69.0011              | 12.9908   | 2.900     | -3.429 |
| SC_3P 0.980                    | 1.025     | 7.02           | 69.006I              | 12.134p   | 1.280     | -1.556 |
| SC_3S 0.980                    | 1.025     | 7.02           | 69.006I              | 12.1338   | 1.280     | -1.564 |
| SC_4P 0.980                    | 1.025     | /./8           | 69.001I              | 12.984p   | 2.991     | -3.541 |
| SC_4S 0.980                    | 1.025     | 1.78           | 69.001I              | 12.984s   | 2.991     | -3.549 |
| TOTAL TANKS                    | >         | 1,681.34       | 125.42UÍ             | 0.005p    | 2.404     |        |
| Total Weight                   | >         | 24,963.58      | 99.346f              | 0.002p    | 12.894    |        |
|                                | 1         | Displ(MT)      | LCB                  | TCB       | VCB       | C 051  |
| нотт                           | 1.025     | 24,966.10      | 99.401f              | 0.006p    | 3.753     | -6.251 |
|                                |           |                |                      | 0 0 0 1 - |           |        |
| RIGDI<br>- Distances in METERS | ing Arms: |                |                      | -0.001S   |           |        |

|           |       | RIGHTING | ARMS vs  | HEEL | ANGLE |        |
|-----------|-------|----------|----------|------|-------|--------|
| Fixed CG: | LCG = | 97.463f  | TCG = 0. | 002p | VCG = | 13.652 |

| Origin                            | Degre | es of      | Displacement | Righting | g Arms    |           |
|-----------------------------------|-------|------------|--------------|----------|-----------|-----------|
| Depth                             | Trim  | Heel       | Weight(MT)   | -in Trim | -in Heel- | > Area    |
| 6.251                             | 0.35f | 0.02p      | 24,966       | 0.002f   | -0.001    | 0.0000    |
| 6.251                             | 0.34f | 0.00       | 24,966       | 0.002f   | 0.001     | -0.0000   |
| 6.149                             | 0.38f | 4.98s      | 24,964       | 0.000    | 0.137     | 0.0060    |
| 5.922                             | 0.45f | 9.98s      | 24,963       | 0.003a   | 0.271     | 0.0238    |
| 5.609                             | 0.52f | 14.98s     | 24,963       | 0.004a   | 0.416     | 0.0538    |
| 5.209                             | 0.60f | 19.98s     | 24,962       | 0.002a   | 0.577     | 0.0970    |
| 4.703                             | 0.70f | 24.98s     | 24,961       | 0.003a   | 0.723     | 0.1538    |
| 4.064                             | 0.80f | 29.98s     | 24,960       | 0.003f   | 0.810     | 0.2211    |
| 3.567                             | 0.87f | 33.28s     | 24,963       | 0.003f   | 0.824     | 0.2684    |
| 3.289                             | 0.91f | 34.98s     | 24,963       | 0.000    | 0.820     | 0.2928    |
| 2.383                             | 1.02f | 39.98s     | 24,963       | 0.000    | 0.777     | 0.3629    |
| 1.365                             | 1.12f | 44.98s     | 24,958       | 0.003a   | 0.720     | 0.4284    |
| 0.253                             | 1.21f | 49.98s     | 24,959       | 0.002a   | 0.691     | 0.4897    |
| -0.936                            | 1.29f | 54.98s     | 24,963       | 0.002a   | 0.691     | 0.5498    |
| -2.189                            | 1.39f | 59.98s     | 24,964       | 0.000    | 0.625     | 0.6077    |
| <b>B</b> <sup>1</sup> · · · · · · |       | <b>———</b> | a            | 1 001    |           | · · · · · |

Distances in METERS.---Specific Gravity = 1.025.---Area in m.-Rad.

Note: The Center of Gravity shown above is for the Fixed Weight of 23282.24 MT. As the tank load centers shift with heel and trim, the total Center of Gravity varies. The righting arms shown above include the effect of the C.G. variation.

| LIM- | FULL LOAD DEPARTURE STABILIT            | 'Y        | Min/Max- |      | Attaine | ed |
|------|-----------------------------------------|-----------|----------|------|---------|----|
| (1)  | Area from abs -0.018 deg to 30          | >         | 0.0550   | mRad | 0.2211  | Ρ  |
| (2)  | Area from abs -0.018 deg to 40 or Flood | >         | 0.0900   | mRad | 0.3629  | Ρ  |
| (3)  | Area from 30 deg to 40 or Flood         | >         | 0.0300   | mRad | 0.1418  | Ρ  |
| (4)  | GM Upright                              | >         | 0.150    | m.   | 1.202   | Ρ  |
| (5)  | Righting Arm at 30 deg or MaxRA         | >         | 0.200    | m.   | 0.824   | Ρ  |
| (6)  | Absolute Angle at MaxRA                 | >         | 25.00    | deg  | 33.28   | Ρ  |
|      | Relative angles measured f              | from 0.01 | 8        |      |         |    |

23-03-24 13:29:35 Memorial Univ. of Newfoundland - Educational Use Page 4 GHS 1

| , LI 10.23.30 IIC | smollar oniv. of newloanalana Baabactonar obe | - |
|-------------------|-----------------------------------------------|---|
| L7.50             | LIGHT OPERATING CONDITION                     |   |
|                   |                                               |   |
|                   | WEIGHT and DISPLACEMENT STATUS                |   |
|                   | Baseline draft: 6.332 @ Origin                |   |
| Tri               | im: Fwd 0.23 deg., Heel: Port 0.01 deg.       |   |

| Crew     |             |       | 1/.00      | 119.400a | 0.000   | 32.000 |        |
|----------|-------------|-------|------------|----------|---------|--------|--------|
| Provisio | ns          |       | 22.00      | 113.300a | 0.000   | 26.875 |        |
| Total    | Fixed>      |       | 20,262.32  | 98.277f  | 0.001p  | 13.370 |        |
|          | Load        | SpGr  | Weight(MT) | LCG      | TCG     | VCG-   | RefHt  |
| LNG_P    | 0.980       | 0.740 | 322.97     | 110.008f | 7.250p  | 5.692  | -7.992 |
| LNG_S    | 0.980       | 0.740 | 322.97     | 110.008f | 7.250s  | 5.692  | -7.994 |
| DO_1C    | 0.980       | 0.870 | 56.68      | 43.751f  | 0.000   | 3.470  | -4.764 |
| DO_2P    | 0.980       | 0.740 | 64.28      | 68.501f  | 2.500p  | 4.940  | -7.605 |
| DO_2S    | 0.980       | 0.740 | 64.28      | 68.500f  | 2.500s  | 4.940  | -7.606 |
| TW_C     | 0.980       | 1.000 | 74.88      | 75.018f  | 0.000   | 1.011  | -1.660 |
| FW_P     | 0.980       | 1.000 | 185.34     | 134.589f | 9.133p  | 4.940  | -7.339 |
| FW_S     | 0.980       | 1.000 | 185.34     | 134.589f | 9.133s  | 4.940  | -7.342 |
| BW_P     | 0.100       | 1.025 | 20.60      | 124.860f | 10.206p | 2.300  | -2.099 |
| GW_S     | 0.100       | 1.025 | 20.60      | 124.860f | 10.205s | 2.300  | -2.101 |
| LO_P     | 0.980       | 0.924 | 20.07      | 47.503f  | 3.750p  | 3.470  | -4.749 |
| LO_S     | 0.980       | 0.924 | 20.07      | 47.503f  | 3.750s  | 3.470  | -4.750 |
| DIRTY_C  | 0.100       | 1.025 | 3.63       | 49.004f  | 0.001p  | 2.150  | -2.104 |
| SL_C     | 0.100       | 0.924 | 4.91       | 46.510f  | 0.001p  | 2.150  | -2.114 |
| BT_1C    | 0.980       | 1.025 | 271.56     | 170.253f | 0.001   | 1.184  | -1.294 |
| BT_2P    | 0.980       | 1.025 | 253.51     | 148.979f | 3.557p  | 1.140  | -1.373 |
| BT_2S    | 0.980       | 1.025 | 253.47     | 148.980f | 3.556s  | 1.140  | -1.374 |
| BT_3P    | 0.980       | 1.025 | 141.35     | 128.709f | 9.142p  | 1.201  | -1.456 |
| BT_3S    | 0.980       | 1.025 | 141.36     | 128.708f | 9.141s  | 1.201  | -1.458 |
| BT_4P    | 0.980       | 1.025 | 212.17     | 109.779f | 9.806p  | 1.097  | -1.526 |
| BT_4S    | 0.980       | 1.025 | 212.14     | 109.779f | 9.805s  | 1.097  | -1.529 |
| BT_5P    | 0.980       | 1.025 | 206.83     | 79.148f  | 10.030p | 1.086  | -1.648 |
| BT_5S    | 0.980       | 1.025 | 206.85     | 79.148f  | 10.030s | 1.086  | -1.651 |
| BT_6P    | 0.980       | 1.025 | 372.96     | 35.600f  | 6.304p  | 3.502  | -4.804 |
| BT_6S    | 0.980       | 1.025 | 372.72     | 35.602f  | 6.304s  | 3.503  | -4.806 |
| SB_1C    | 0.980       | 1.025 | 86.05      | 89.001f  | 0.007s  | 0.992  | -1.604 |
| SB_2C    | 0.980       | 1.025 | 83.13      | 69.002f  | 0.002s  | 1.026  | -1.685 |
| SC_1P    | 0.980       | 1.025 | 7.83       | 89.000f  | 12.989p | 2.986  | -3.602 |
| SC_1S    | 0.980       | 1.025 | 7.80       | 89.000f  | 12.181s | 1.228  | -1.617 |
| SC_2P    | 0.980       | 1.025 | 7.83       | 89.000f  | 12.989p | 2.986  | -3.602 |
| SC_2S    | 0.980       | 1.025 | 7.83       | 89.000f  | 12.990s | 2.986  | -3.605 |
| SC_3P    | 0.980       | 1.025 | 7.02       | 69.006f  | 12.133p | 1.280  | -1.697 |
| SC_3S    | 0.980       | 1.025 | 7.02       | 69.006f  | 12.133s | 1.280  | -1.700 |
| SC_4P    | 0.980       | 1.025 | 7.78       | 69.001f  | 12.984p | 2.991  | -3.682 |
| SC_4S    | 0.980       | 1.025 | 7.78       | 69.001f  | 12.984s | 2.991  | -3.685 |
| Total    | Tanks>      |       | 4,241.59   | 100.799f | 0.002p  | 2.770  |        |
| Total    | Weight>     |       | 24,503.91  | 98.714f  | 0.002p  | 11.535 |        |
|          |             |       | Displ(MT)  | LCB      | TCB     | VCB    |        |
| HULL     |             | 1.025 | 24,507.21  | 98.744f  | 0.005p  | 3.693  | -6.332 |
|          |             |       |            |          |         |        |        |
| <b>.</b> | Righting    | Arms: |            | 0.001a   | -0.002s |        |        |
| Distance | s in METERS |       |            |          |         |        |        |

23-03-24 13:29:35 Memorial Univ. of Newfoundland - Educational Use Page 5 LIGHT OPERATING CONDITION GHS 17.50

|         |       |       | RIGHTING | ARMS ' | vs | HEEL | ANGLE |        |
|---------|-------|-------|----------|--------|----|------|-------|--------|
| Fixed ( | CG: 3 | LCG = | 98.277f  | TCG =  | Ο. | 001p | VCG = | 13.370 |

| Origin   | Degre   | es of  | Displacement     | Righting   | g Arms   |          |
|----------|---------|--------|------------------|------------|----------|----------|
| Depth    | -Trim   | Heel   | Weight(MT)·      | -in Trim   | in Heel- | > Area   |
| 6.333    | 0.23f   | 0.01p  | 24,507           | 0.003a     | -0.002   | 0.0000   |
| 6.228    | 0.27f   | 4.99s  | 24,504           | 0.003a     | 0.264    | 0.0114   |
| 6.000    | 0.33f   | 9.99s  | 24,504           | 0.003a     | 0.526    | 0.0459   |
| 5.688    | 0.41f   | 14.99s | 24,503           | 0.004a     | 0.797    | 0.1036   |
| 5.287    | 0.49f   | 19.99s | 24,502           | 0.005a     | 1.079    | 0.1853   |
| 4.776    | 0.59f   | 24.99s | 24,501           | 0.003a     | 1.336    | 0.2909   |
| 4.133    | 0.70f   | 29.99s | 24,500           | 0.003a     | 1.523    | 0.4161   |
| 3.348    | 0.81f   | 34.99s | 24,498           | 0.003f     | 1.625    | 0.5541   |
| 2.437    | 0.92f   | 39.99s | 24,503           | 0.000      | 1.666    | 0.6981   |
| 1.410    | 1.03f   | 44.99s | 24,503           | 0.000      | 1.684    | 0.8444   |
| 0.287    | 1.13f   | 49.99s | 24,498           | 0.002a     | 1.724    | 0.9930   |
| -0.910   | 1.22f   | 54.99s | 24,503           | 0.002a     | 1.794    | 1.1463   |
| -1.603   | 1.27f   | 57.76s | 24,507           | 0.004f     | 1.809    | 1.2334   |
| -2.169   | 1.32f   | 59.99s | 24,503           | 0.000      | 1.799    | 1.3036   |
| Distance | s in ME | TERS   | -Specific Gravit | ty = 1.025 | 5Area    | in mRad. |

Note: The Center of Gravity shown above is for the Fixed Weight of 20262.32 MT. As the tank load centers shift with heel and trim, the total Center of Gravity varies. The righting arms shown above include the effect of the C.G. variation.

LIM-----Full LOAD DEPARTURE STABILITY-----Min/Max-----Attained 

 (1) Area from abs -0.007 deg to 30
 > 0.0550 m.-Rad 0.4161 P

 (2) Area from abs -0.007 deg to 40 or Flood
 > 0.0900 m.-Rad 0.6981 P

 (3) Area from 30 deg to 40 or Flood
 > 0.0300 m.-Rad 0.2820 P

 (4) GM Upright > 0.150 m. 2.432 P (5) Righting Arm at 30 deg or MaxRA > 0.200 m. 1.809 P > 25.00 deg 57.76 P (6) Absolute Angle at MaxRA -----Relative angles measured from 0.007 -----Relative angles measured from 0.007

GHS 17.50 WORST CASE OPERATING CONDITION

| _                 |                  | WEIGHT a | nd DISPLACEME | ENT STATUS | 5        | 0 105 00  |        |
|-------------------|------------------|----------|---------------|------------|----------|-----------|--------|
| В                 | aseline draft: ( | 6.531 @  | 6.92a, 6.568  | @ 100.96a  | a, 6.604 | @ 195.00a |        |
| Dent              | Trim: A          | Et 0.0// | 188.08, Heel  | L: Port U. | .04 deg. | 1100      |        |
| Part              |                  |          | weight (MT)   | 105 2065   | TCG      | 12 240    |        |
| LIGHT SH          |                  |          | 20,223.24     | 125.3961   | 0.002p   | 13.340    |        |
| Passenge          | rs and Effects   |          | 17.00         | 113.300a   | 0.000    | 26.8/5    |        |
| Crew and          | EIIECTS          |          | 17.00         | 119.400a   | 0.000    | 32.000    |        |
| Passenge          | r venicies       |          | 400.00        | 96.000a    | 0.000    | 14.000    |        |
| Live Uni          | ts               |          | 1,5/5.00      | 83.500a    | 0.000    | 18.000    |        |
| Drop Uni          | ts               |          | 875.00        | 83.500a    | 0.000    | 15.500    |        |
| Provisio          | ns               |          | 22.00         | 113.300a   | 0.000    | 26.875    |        |
| Total             | Fixed>           |          | 23,282.24     | 97.463f    | 0.002p   | 13.873    |        |
|                   | Load             | SpGr     | Weight (MT)   | LCG        | TCG      | VCG       | ReiHt  |
| LNG_P             | 0.020            | 0.740    | 6.63          | 109.961    | 7.252p   | 2.939     | -3.104 |
| LNG_S             | 0.020            | 0.740    | 6.63          | 109.961f   | 7.248s   | 2.939     | -3.113 |
| DO_1C             | 0.020            | 0.870    | 1.16          | 43.747f    | 0.077p   | 2.030     | -2.077 |
| DO_2P             | 0.020            | 0.740    | 1.31          | 68.498f    | 2.512p   | 2.060     | -2.145 |
| DO_2S             | 0.020            | 0.740    | 1.31          | 68.498f    | 2.488s   | 2.060     | -2.148 |
| TW_C              | 0.020            | 1.000    | 1.53          | 74.916f    | 0.023p   | 0.080     | -0.129 |
| FW_P              | 0.020            | 1.000    | 3.78          | 134.553f   | 9.141p   | 2.060     | -2.166 |
| FW_S              | 0.020            | 1.000    | 3.78          | 134.561f   | 9.130s   | 2.060     | -2.179 |
| BW_P              | 0.020            | 1.025    | 4.12          | 124.775f   | 10.215p  | 2.060     | -2.162 |
| GW_S              | 0.020            | 1.025    | 4.12          | 124.779f   | 10.203s  | 2.060     | -2.176 |
| LO_P              | 0.980            | 0.924    | 20.07         | 47.500f    | 3.750p   | 3.470     | -4.956 |
| lo_s              | 0.980            | 0.924    | 20.07         | 47.500f    | 3.750s   | 3.470     | -4.961 |
| DIRTY_C           | 0.100            | 1.025    | 3.63          | 49.000f    | 0.007p   | 2.150     | -2.319 |
| SL_C              | 0.100            | 0.924    | 4.91          | 46.499f    | 0.007p   | 2.150     | -2.318 |
| SB_1C             | 0.980            | 1.025    | 86.05         | 89.000f    | 0.005p   | 0.992     | -1.995 |
| SB_2C             | 0.980            | 1.025    | 83.13         | 69.001f    | 0.010p   | 1.026     | -1.989 |
| SC 1P             | 0.980            | 1.025    | 7.83          | 89.000f    | 12.990p  | 2.986     | -3.986 |
| SC 1S             | 0.980            | 1.025    | 7.80          | 88.999f    | 12.181s  | 1.228     | -2.016 |
| SC <sup>2</sup> P | 0.980            | 1.025    | 7.83          | 89.000f    | 12.990p  | 2.986     | -3.986 |
| sc_2s             | 0.980            | 1.025    | 7.83          | 89.000f    | 12.990s  | 2.986     | -4.004 |
| SC 3P             | 0.980            | 1.025    | 7.02          | 69.004f    | 12.134p  | 1.280     | -1.993 |
| sc_3s             | 0.980            | 1.025    | 7.02          | 69.004f    | 12.133s  | 1.280     | -2.010 |
| sc_4p             | 0.980            | 1.025    | 7.78          | 69.000f    | 12.984p  | 2.991     | -3.979 |
| sc_4s             | 0.980            | 1.025    | 7.78          | 69.000f    | 12.984s  | 2.991     | -3.996 |
| _<br>Total        | Tanks>           |          | 313.13        | 77.872f    | 0.026p   | 1.763     |        |
| Total             | Weight>          |          | 23,595.37     | 97.203f    | 0.002p   | 13.712    |        |
|                   | 5                |          | Displ(MT)     | LCB        | тсв      | VCB       |        |
| HULL              |                  | 1.025    | 23,595.56     | 97.199f    | 0.009p   | 3.577     | -6.528 |
|                   | Righting         | Arms:    |               | 0.001      | 0.000    |           |        |
| Distance          | s in METERS      |          |               |            |          |           |        |

23-03-24 13:39:24 Memorial Univ. of Newfoundland - Educational Use Page 5 GHS 17.50 WORST CASE OPERATING CONDITION

|           |       | RIGHTING | ARMS vs | HEEL  | ANGLE |        |
|-----------|-------|----------|---------|-------|-------|--------|
| Fixed CG: | LCG = | 97.463f  | TCG = 0 | .002p | VCG = | 13.873 |

| Origin       | Degre | es of  | Displacement    | Righting  | g Arms    |        |
|--------------|-------|--------|-----------------|-----------|-----------|--------|
| Depth-       | Trim  | Heel   | Weight(MT)      | -in Trim- | -in Heel- | > Area |
| 6.528        | 0.02a | 0.04p  | 23 <b>,</b> 595 | 0.000     | 0.000     | 0.0000 |
| 6.528        | 0.02a | 0.00   | 23 <b>,</b> 595 | 0.000     | 0.001     | 0.0000 |
| 6.421        | 0.02f | 4.96s  | 23,596          | 0.002a    | 0.114     | 0.0050 |
| 6.196        | 0.08f | 9.96s  | 23,596          | 0.004a    | 0.213     | 0.0194 |
| 5.882        | 0.16f | 14.96s | 23 <b>,</b> 595 | 0.000     | 0.320     | 0.0426 |
| 5.480        | 0.25f | 19.96s | 23 <b>,</b> 595 | 0.005a    | 0.435     | 0.0755 |
| 4.963        | 0.35f | 24.96s | 23 <b>,</b> 593 | 0.004a    | 0.520     | 0.1174 |
| 4.588        | 0.42f | 27.97s | 23,596          | 0.003a    | 0.536     | 0.1452 |
| 4.310        | 0.47f | 29.96s | 23 <b>,</b> 595 | 0.000     | 0.529     | 0.1637 |
| 3.513        | 0.59f | 34.96s | 23 <b>,</b> 595 | 0.000     | 0.453     | 0.2072 |
| 2.583        | 0.72f | 39.96s | 23,589          | 0.004a    | 0.321     | 0.2414 |
| 1.539        | 0.84f | 44.96s | 23 <b>,</b> 587 | 0.003a    | 0.176     | 0.2632 |
| 0.398        | 0.96f | 49.96s | 23,588          | 0.002a    | 0.060     | 0.2733 |
| -0.818       | 1.06f | 54.96s | 23 <b>,</b> 593 | 0.002a    | 0.002     | 0.2755 |
| -2.086       | 1.16f | 59.96s | 23,593          | 0.000     | -0.079    | 0.2723 |
| <b>-</b> · · |       |        |                 |           |           |        |

Distances in METERS.---Specific Gravity = 1.025.---Area in m.-Rad.

Note: The Center of Gravity shown above is for the Fixed Weight of 23282.24 MT. As the tank load centers shift with heel and trim, the total Center of Gravity varies. The righting arms shown above include the effect of the C.G. variation.

| LIM        | FULL LOAD DEPARTURE STABILITY      | 1       | Min/Max• |      | -Attaine | эd |
|------------|------------------------------------|---------|----------|------|----------|----|
| (1) Area f | From abs -0.039 deg to 30          | >       | 0.0550   | mRad | 0.1637   | Ρ  |
| (2) Area f | from abs -0.039 deg to 40 or Flood | >       | 0.0900   | mRad | 0.2414   | Ρ  |
| (3) Area f | From 30 deg to 40 or Flood         | >       | 0.0300   | mRad | 0.0776   | Ρ  |
| (4) GM Upr | right                              | >       | 0.150    | m.   | 1.046    | Ρ  |
| (5) Righti | ng Arm at 30 deg or MaxRA          | >       | 0.200    | m.   | 0.529    | Ρ  |
| (6) Absolu | ite Angle at MaxRA                 | >       | 25.00    | deg  | 27.97    | Ρ  |
|            | Relative angles measured from      | n 0.039 | 9        |      |          |    |





## APPENDIX J – DAMAGED STABILITY OUTPUTS

23-03-25 17:17:51 Memorial Univ. of Newfoundland - Educational Use Page 33 FULL LOAD - ARRIVAL DAMAGE (ICE) GHS 17.50

RIGHTING ARMS vs HEEL ANGLE with FLOODING Fixed CG: LCG = 94.740f TCG = 0.001 VCG = 13.778

| Origin | Degre     | es of    | Displacement     | Rightin  | g Arms    |           | Flood Pt  |
|--------|-----------|----------|------------------|----------|-----------|-----------|-----------|
| Depth  | Trim      | Heel     | Weight(MT)       | in Trim- | -in Heel- | > Area-   | -Height   |
| 7.462  | 0.91f     | 0.00     | 27,230           | 0.003a   | -0.001    | 0.0000    | 11.155(3) |
| 7.422  | 0.91f     | 5.00p    | 27,230           | 0.003f   | 0.029     | 0.0012    | 9.911(3)  |
| 7.275  | 0.93f     | 10.00p   | 27 <b>,</b> 229  | 0.000    | 0.076     | 0.0056    | 8.690(3)  |
| 7.028  | 0.94f     | 15.00p   | 27 <b>,</b> 229  | 0.000    | 0.242     | 0.0186    | 7.442(3)  |
| 6.686  | 0.95f     | 20.00p   | 27 <b>,</b> 229  | 0.000    | 0.479     | 0.0496    | 6.184(3)  |
| 6.523  | 0.95f     | 22.00p   | 27 <b>,</b> 229  | 0.003f   | 0.589     | 0.0682    | 5.684(3)  |
| 6.251  | 0.95f     | 25.00p   | 27 <b>,</b> 229  | 0.000    | 0.770     | 0.1037    | 4.936(3)  |
| 5.707  | 0.96f     | 30.00p   | 27,229           | 0.000    | 1.093     | 0.1847    | 3.730(3)  |
| 5.030  | 0.98f     | 35.00p   | 27,229           | 0.000    | 1.402     | 0.2936    | 2.607(3)  |
| 4.204  | 0.99f     | 40.00p   | 27 <b>,</b> 229  | 0.000    | 1.662     | 0.4276    | 1.589(3)  |
| 4.067  | 1.00f     | 40.75p   | 27 <b>,</b> 229  | 0.000    | 1.695     | 0.4497    | Marg Imm. |
| 3.232  | 1.01f     | 45.00p   | 27 <b>,</b> 229  | 0.000    | 1.871     | 0.5821    | 0.687(3)  |
| 2.302  | 1.03f     | 49.32p   | 27,229           | 0.003a   | 2.020     | 0.7290    | -0.002(3) |
| 2.149  | 1.04f     | 50.00p   | 27 <b>,</b> 229  | 0.000    | 2.036     | 0.7530    | -0.101(3) |
| 1.216  | 1.07f     | 54.11p   | 27 <b>,</b> 229  | 0.003a   | 2.079     | 0.9007    | -0.694(3) |
| 1.013  | 1.07f     | 55.00p   | 27 <b>,</b> 229  | 0.000    | 2.077     | 0.9328    | -0.819(3) |
| -0.141 | 1.11f     | 60.00p   | 27 <b>,</b> 229  | 0.000    | 2.004     | 1.1117    | -1.733(2) |
| Distan | ces in ME | TERS     | Specific Gravi   | ty = 1.0 | 25        | Area      | in mRad.  |
| Note:  | The Cent  | er of Gi | ravity shown abo | ve is fo | r the Fix | ed Weight | of        |
|        | 23471.15  | MT. As   | s the tank load  | centers  | shift wit | h heel ar | ıd        |
|        | trim, th  | e total  | Center of Gravi  | ty varie | s. The r  | ighting a | rms       |
|        | shown ab  | ove inc  | lude the effect  | of the C | .G. varia | tion.     |           |
|        | Criti     | cal Poir | 1ts              |          | -LCP      | тсръ      | IC P      |
|        | (2) STERN | Cur IOII | <br>F            | LOOD 0   | .000 14.  | 000 20.5  | 00        |

|          | (2)   | STERN           |             | F. TOOI   | 5 0   | .000  | 14.000    | 20.500 |          |    |
|----------|-------|-----------------|-------------|-----------|-------|-------|-----------|--------|----------|----|
|          | (3)   | MIDSHIP         |             | FLOOI     | 0 102 | .000a | 14.000    | 17.000 |          |    |
| LIM      |       | DAMAGE          | STABILITY   | CRITERIO  | DN    |       | -Min/Max· |        | -Attaine | ed |
| (1) GM U | Uprig | ſht             |             |           |       | >     | 0.100     | m.     | 0.032    | F  |
| (2) Rigl | hting | f Arm at MaxRA  |             |           |       | >     | 0.050     | m.     | 2.079    | Ρ  |
| (3) Abso | olute | e Angle at Equi | ilibrium    |           |       | <     | 7.00      | deg    | 0.00     | Ρ  |
| (4) Ang  | le fr | om Equilibrium  | n to Dk/mai | rgin Imme | ersic | on >  | 0.00      | deg    | 40.75    | Ρ  |
| (5) Area | a fro | om Equilibrium  | to abs 22   | deg or H  | Flood | l >   | 0.0150    | mRad   | 0.0682   | Ρ  |
|          |       |                 |             |           |       |       |           |        |          |    |

RIGHTING ARMS vs HEEL ANGLE with FLOODING Fixed CG: LCG = 97.730f TCG = 0.002p VCG = 13.873

| Origin  | Degre     | es of    | Displacement    | Rightin   | g Arms    |           | Flood Pt  |
|---------|-----------|----------|-----------------|-----------|-----------|-----------|-----------|
| Depth-  | Trim      | Heel     | Weight (MT)     | in Trim-  | -in Heel- | > Area-   | -Height   |
| 6.603   | 1.12f     | 0.00     | 25,213          | 0.002f    | -0.001    | 0.0000    | 12.396(3) |
| 6.511   | 1.16f     | 5.00s    | 25,212          | 0.002a    | -0.031    | -0.0014   | 11.259(3) |
| 6.305   | 1.22f     | 10.00s   | 25,211          | 0.000     | -0.044    | -0.0048   | 10.175(3) |
| 6.141   | 1.25f     | 13.04s   | 25,215          | 0.003f    | 0.000     | -0.0061   | 9.491(3)  |
| 6.021   | 1.27f     | 15.00s   | 25,212          | 0.000     | 0.053     | -0.0052   | 9.030(3)  |
| 5.658   | 1.29f     | 20.00s   | 25,212          | 0.000     | 0.241     | 0.0069    | 7.829(3)  |
| 5.489   | 1.30f     | 22.00s   | 25,212          | 0.000     | 0.332     | 0.0169    | 7.344(3)  |
| 5.206   | 1.31f     | 25.00s   | 25,212          | 0.000     | 0.482     | 0.0381    | 6.621(3)  |
| 4.643   | 1.33f     | 30.00s   | 25,212          | 0.000     | 0.737     | 0.0911    | 5.454(3)  |
| 3.946   | 1.36f     | 35.00s   | 25,212          | 0.000     | 0.956     | 0.1652    | 4.363(3)  |
| 3.106   | 1.37f     | 40.00s   | 25,212          | 0.000     | 1.111     | 0.2558    | 3.364(3)  |
| 2.806   | 1.38f     | 41.61s   | 25,212          | 0.003a    | 1.151     | 0.2877    | Marg Imm. |
| 2.133   | 1.39f     | 45.00s   | 25,212          | 0.000     | 1.237     | 0.3583    | 2.461(3)  |
| 1.049   | 1.41f     | 50.00s   | 25,212          | 0.000     | 1.353     | 0.4715    | 1.403(2)  |
| 0.186   | 1.44f     | 53.69s   | 25,212          | 0.004a    | 1.381     | 0.5599    | 0.669(2)  |
| -0.128  | 1.46f     | 55.00s   | 25,212          | 0.000     | 1.378     | 0.5913    | 0.418(2)  |
| -0.663  | 1.48f     | 57.20s   | 25,212          | 0.000     | 1.356     | 0.6439    | -0.002(2) |
| -1.343  | 1.52f     | 60.00s   | 25,212          | 0.000     | 1.301     | 0.7087    | -0.530(2) |
| Distand | es in ME  | TERS     | Specific Gravi  | ty = 1.02 | 25        | Area      | in mRad.  |
| Note:   | The Cent  | er of Gr | avity shown abo | ve is fo  | r the Fix | ed Weight | of        |
|         | 22969.19  | MT. As   | the tank load   | centers   | shift wit | h heel an | d         |
|         | trim, the | e total  | Center of Gravi | tv varie  | s. The r  | ighting a | rms       |
|         | shown ab  | ove incl | ude the effect  | of the C  | .G. varia | tion.     |           |
|         |           |          |                 |           |           |           |           |

|      |         | Critical   | Point   | s          |       |      | LCP     |       | TCP   | VCP    |          |    |
|------|---------|------------|---------|------------|-------|------|---------|-------|-------|--------|----------|----|
|      | (2)     | STERN      |         |            | F     | LOOD | 0.000   | 14.   | 000   | 20.500 |          |    |
|      | (3)     | MIDSHIP    |         |            | FI    | LOOD | 102.000 | a 14. | 000   | 17.000 |          |    |
| LIM- |         | I          | DAMAGE  | STABILITY  | CRIT  | ERIO | N       | Min   | n/Max |        | -Attaine | ed |
| (1)  | GM Upri | ight       |         |            |       |      | >       | > (   | 0.100 | m.     | -0.725   | F  |
| (2)  | Rightin | ng Arm at  | MaxRA   |            |       |      | >       | > (   | 0.050 | m.     | 1.381    | Ρ  |
| (3)  | Absolut | e Angle a  | at Equi | librium    |       |      | <       | <     | 7.00  | deg    | 13.04    | F  |
| (4)  | Angle i | from Equil | librium | n to Dk/ma | argin | Imme | rsion > | >     | 0.00  | deg    | 28.57    | Ρ  |
| (5)  | Area fi | com Equili | lbrium  | to abs 22  | 2 deg | or F | lood >  | > 0   | .0150 | mRad   | 0.0230   | Ρ  |
|      |         |            |         |            |       |      |         |       |       |        |          |    |





# APPENDIX K – GENERAL ARRANGEMENT

|                                                                       | 2                                       | 3                                              | 4            | 5           | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                      |             |                              | 8          |
|-----------------------------------------------------------------------|-----------------------------------------|------------------------------------------------|--------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------|------------------------------|------------|
|                                                                       |                                         |                                                |              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |             |                              |            |
|                                                                       |                                         |                                                |              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |             |                              |            |
|                                                                       |                                         |                                                |              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |             |                              |            |
|                                                                       |                                         |                                                |              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |             |                              |            |
|                                                                       |                                         |                                                |              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |             |                              |            |
|                                                                       |                                         |                                                |              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |             |                              |            |
|                                                                       |                                         |                                                |              |             | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                        |             |                              |            |
|                                                                       |                                         |                                                |              |             | €<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |             |                              |            |
|                                                                       |                                         |                                                |              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |             |                              |            |
|                                                                       |                                         |                                                |              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        | 4 C<br>31   | DECK<br>500 ABL<br>DECK      |            |
|                                                                       |                                         |                                                |              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        | 28<br>      | JS00 ABL<br>DECK<br>JS00 ABL |            |
| Canadă                                                                |                                         |                                                |              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ATLANTIC PUFFIN                        |             | DECK<br>2500 ABL             |            |
|                                                                       |                                         |                                                |              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |             |                              |            |
|                                                                       |                                         |                                                |              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |             | DECK                         |            |
| 0                                                                     |                                         |                                                |              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | • • • •                                |             | 500 ABL                      |            |
|                                                                       |                                         |                                                |              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>A</b>                               |             | DECK<br>000 ABL              |            |
|                                                                       |                                         |                                                |              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        | — TA<br>20  | ANK TOP<br>000 ABL           |            |
| $\begin{array}{c c} & & & \\ \hline \\ 0 & & & 10 & & 20 \end{array}$ | 1 + + + + + + + + + + + + + + + + + + + | ++++++++++++++++++++++++++++++++++++           | 90 100 - 110 | 120 130 140 | 1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 | ++++++++++++++++++++++++++++++++++++++ | 200 2.      | 10                           |            |
|                                                                       |                                         |                                                |              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |             |                              | _          |
|                                                                       |                                         |                                                |              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |             |                              |            |
|                                                                       |                                         |                                                |              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |             |                              |            |
|                                                                       |                                         |                                                |              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |             |                              |            |
|                                                                       |                                         |                                                |              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |             |                              |            |
|                                                                       |                                         |                                                |              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |             |                              |            |
|                                                                       |                                         |                                                |              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |             |                              |            |
|                                                                       |                                         |                                                |              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |             |                              |            |
|                                                                       | 204.0                                   | ABBREVIATIONS                                  |              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |             |                              |            |
|                                                                       | 204.0                                   | BW - BLACK WATER<br>ECR - ENGINE CONTROL ROOM  |              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |             |                              |            |
|                                                                       | 28.0                                    | ESC - ESCAPE HATCH<br>F.O FUEL OIL             |              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |             | F                            |            |
| MOULDED DEPTH (m)                                                     | 17.0                                    | FW - FRESH WATER<br>GW - GREY WATER            |              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        | MARINE      |                              | AX FERRY   |
| DESIGN DRAFT (m)                                                      | 6.7                                     | LM - LANE METERS<br>LNG - LIQUIFIED NATUAL GAS |              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                      |             |                              |            |
| DISPLACEMENT (TONNES)                                                 | 24,578                                  | L.O LUBRICATION OIL<br>ME - MAIN ENGINE        |              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |             | ERAL ARRANGE                 | MENT       |
| COMPLEMENT                                                            | 100                                     | SB - SEA BAY<br>SC - SEA CHEST                 |              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\mathbf{V}$                           |             |                              |            |
| PASSENGER CAPACITY                                                    | 1000                                    | WU - WATER ULUSET                              |              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\overline{\Lambda T}$                 | SHEET SIZE  |                              | DATE       |
| VEHICLE CAPACITY (LANE METERS)                                        | 3263                                    |                                                |              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |             |                              |            |
| ICE CLASS                                                             | 1A                                      |                                                |              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Τ.                                     | 1:600       | A.B.                         | 03/16/2023 |
| INSTALLED POWER (kW)                                                  | 21,600                                  |                                                |              |             | Ι Τ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RAK                                    | DRAWING NO. | REV.                         | PAGE       |
|                                                                       |                                         |                                                |              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        | AP-03       | 0                            | 1 OF 7     |
| 1                                                                     | 2                                       | 3                                              | 4            | 5           | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7                                      | -1          |                              | 8          |







| 1 | 2 | 3 | 4 | 5 |  |
|---|---|---|---|---|--|

| 7             |                                                                |                                                                                                                  | 8                                                               | - |
|---------------|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|---|
|               |                                                                | ECK<br>00 ABL<br>ECK<br>00 ABL<br>ECK                                                                            |                                                                 | 1 |
|               |                                                                | ECK<br>00 ABL<br>ECK<br>00 ABL<br>ECK<br>00 ABL<br>ECK<br>0 ABL<br>ECK<br>0 ABL<br>ECK<br>0 ABL<br>KTOP<br>0 ABL |                                                                 | 2 |
| 180 190       | 200 210                                                        | )                                                                                                                |                                                                 | 3 |
|               |                                                                |                                                                                                                  |                                                                 | 4 |
| $\rightarrow$ | PROJECT TITLE<br>MARINE<br>DRAWING TITLI                       | ATLANTIC ROP                                                                                                     | AX FERRY                                                        | 5 |
| RAK<br>7      | SHEET SIZE<br>ANSI B<br>SCALE<br>1:600<br>DRAWING NO.<br>AP-03 | DRAWN BY<br>R.C.<br>CHECKED BY<br>A.B.<br>REV.<br>0                                                              | DATE<br>02/03/2023<br>DATE<br>03/16/2023<br>PAGE<br>2 OF 7<br>8 | 6 |

| _      | 1 2 | 3 4                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6 | 7                                                                                                                                                                                            | 8                                                               |
|--------|-----|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| 1      |     |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   | CABINSWINDOW0INSIDE0WHEELCHAIR0SUITE0CREW92TOTAL92                                                                                                                                           |                                                                 |
| 2      |     |                                      | ULUNDEY<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT<br>COUNT |   |                                                                                                                                                                                              |                                                                 |
| 3      |     | 100 DECK                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   | CABINS         80       190       200       210         WINDOW       42         INSIDE       43         WHEELCHAIR       6         SUITE       0         CREW       6         TOTAL       97 |                                                                 |
| ,<br>ŧ |     |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |                                                                                                                                                                                              |                                                                 |
| ;      |     | ++++++++++++++++++++++++++++++++++++ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   | PROJECT TITLE<br>MARINE ATLANTIC ROI<br>DRAWING TITLE<br>GENERAL ARRANG                                                                                                                      | PAX FERRY                                                       |
| Ď      | 1 2 | 3 4                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   | SHEET SIZE DRAWN BY<br>ANSI B R.C.<br>SCALE CHECKED BY<br>1:600 A.B.<br>DRAWING NO.<br>AP-03 0                                                                                               | DATE<br>02/03/2023<br>DATE<br>03/16/2023<br>PAGE<br>3 OF 7<br>8 |

|   | VERTIC<br>ZONE                                                                                         | N<br>CAL<br>E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MAIN<br>VERTICAL<br>ZONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | VERTICAL<br>ZONE                       |                                      |                                        |                         |                   |                    |
|---|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------|----------------------------------------|-------------------------|-------------------|--------------------|
|   | EXPOSED PROMENADE                                                                                      | ENCLOSED PROMENADE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        |                                      |                                        |                         |                   |                    |
|   | GYM<br>(162M <sup>2</sup> )<br>TRUCK<br>DRIVERS<br>LOUNGE<br>(162M <sup>2</sup> )<br>EXPOSED PROMENADE | CINEMA<br>(85M <sup>2</sup> )<br>CINEMA<br>(85M <sup>2</sup> | WC HVAC<br>(71M <sup>2</sup> )<br>SERVICE<br>OFFICE<br>(102M <sup>2</sup> )<br>UC UOUN<br>OFFICE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        | GALLEY CAFETERIA<br>(800m2)          |                                        |                         |                   |                    |
|   |                                                                                                        | ++++++++++++++++++++++++++++++++++++++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 80 90 100 110<br><u>COMPACT NOT TO A COMPACT NOT TO A COMPACT</u> | ++++++++++++++++++++++++++++++++++++++ | ++++++++++++++++++++++++++++++++++++ | 11111111111111111111111111111111111111 | +++++++++++<br>200 210  |                   |                    |
|   |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        |                                      |                                        | PROJECT TITLE<br>MARINE | ATLANTIC ROPA     | X FERRY            |
|   |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        | X                                    |                                        | DRAWING TITLE<br>GENE   | E<br>RAL ARRANGEI | MENT               |
|   |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        |                                      | 木ナ                                     | SHEET SIZE<br>ANSI B    | DRAWN BY<br>R.C.  | DATE<br>02/03/2023 |
|   |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        |                                      |                                        | SCALE                   | CHECKED BY        | DATE               |
|   |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        |                                      |                                        | 1:600                   | A.B.              | 03/16/2023         |
|   |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        |                                      | <b>XAN</b>                             | DRAWING NO.             | REV.              | PAGE               |
| 1 | 2                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        |                                      |                                        | AP-03                   | 0                 | 4 OF 7             |
| 1 | 2                                                                                                      | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5                                      | 6                                    | 1 7                                    |                         |                   | 8                  |



PLAN ABOVE 2 DECK 25500 ABL

| 7          |     |
|------------|-----|
|            |     |
| CAB        | INS |
| WINDOW     | 58  |
| INSIDE     | 58  |
| WHEELCHAIR | 4   |
| SUITE      | 8   |
|            |     |



| _ | 1                                | 2                                      | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                                                                 | 5                            | 6                                                                  |
|---|----------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------|--------------------------------------------------------------------|
| 1 |                                  | MAIN<br>VERTICAL<br>ZONE               | 145 LM<br>146 LM<br>147 LM<br>187 LM<br>158 LM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                   |                              | MAIN<br>/ERTICAL<br>ZONE                                           |
| 2 |                                  |                                        | 155 LM<br>155 LM<br>155 LM<br>158 LM |                                                                   |                              | The TIELM MOORING I<br>HADDINE TYPE<br>FLOOD CONTROL DOOR          |
| 3 | 0 10                             | 20 30 40 MAIN VERTICAL ZONE            | 50 60 70 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 90 100 110<br>PLAN ABOVE A DECK<br>1700 ABL<br>VERTICAL<br>ZONE   | 120 130 140<br>M<br>VEF<br>Z | IAIN<br>ATICAL<br>ONE                                              |
| 4 | 16 LM<br>16 LM<br>16 LM<br>16 LM |                                        | 141 LM<br>151 LM<br>132 LM<br>132 LM<br>132 LM<br>131 LM<br>140 LM<br>140 LM<br>140 LM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SERVICE DE CATCH                                                  |                              | ROPE STORE<br>PLM<br>PLM<br>PLM<br>PLM<br>PLM<br>PLM<br>PLM<br>PLM |
| 5 | ++++++++ +++++++<br>0            | ++++++++++++++++++++++++++++++++++++++ | ++++++++++++++++++++++++++++++++++++++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 90 100 110<br><u>DEC</u><br><u>PLAN ABOVE B DECK</u><br>11500 ABL | ++++++<br>120 130 140        | +++++++++++++++++++++++++++++++++++++++                            |
| 6 | 1                                | 2                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                                                                 | 5                            |                                                                    |



| 1                                                                                                                                                                                                                                                                                                                          | 2                                      | 3                                               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5 6                                                                                                                                                      |                                        | 7                                      |                           |              | 8          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------|---------------------------|--------------|------------|
|                                                                                                                                                                                                                                                                                                                            |                                        |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                          |                                        | VEHI                                   | CLE CAPACITY              |              |            |
|                                                                                                                                                                                                                                                                                                                            |                                        |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                          |                                        |                                        | 232 LM                    |              |            |
| AT<br>AT<br>PEAK<br><br>AT<br>PEAK<br><br>AT<br>AT<br>PEAK<br><br>AZIMUTHING POD<br>COMPARTMENT<br>(196M <sup>2</sup> )<br>COMPARTMENT<br>(196M <sup>2</sup> )<br>COMPARTMENT<br>(196M <sup>2</sup> )<br>COMPARTMENT<br>(196M <sup>2</sup> )<br>COMPARTMENT<br>(196M <sup>2</sup> )<br>COMPARTMENT<br>(196M <sup>2</sup> ) | ORE POWER                              | INCINERATOR<br>AND WASTE<br>SORTING/<br>STORAGE | MASTE SORTING/<br>STORAGE AND<br>RECYCLING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RE POWER<br>28 LM<br>30 LM | TALS STORES STORES                     | FOREPEAK                               |                           |              |            |
| SH                                                                                                                                                                                                                                                                                                                         | ORE POWER                              |                                                 | SHO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | REPOWER                                                                                                                                                  |                                        |                                        |                           |              |            |
|                                                                                                                                                                                                                                                                                                                            |                                        | ++++++++++++++++++++++++++++++++++++            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                          |                                        |                                        |                           |              | -          |
|                                                                                                                                                                                                                                                                                                                            |                                        |                                                 | PLAN ABOVE C DECK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                          |                                        |                                        |                           |              |            |
|                                                                                                                                                                                                                                                                                                                            |                                        |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                          |                                        |                                        |                           |              |            |
|                                                                                                                                                                                                                                                                                                                            |                                        |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                          |                                        |                                        |                           |              |            |
| Ć                                                                                                                                                                                                                                                                                                                          |                                        |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | BW_P FW_F LAUND                                                                                                                                          |                                        |                                        |                           |              | -          |
|                                                                                                                                                                                                                                                                                                                            |                                        |                                                 | DOMESTIC<br>MACHINERY<br>SPACE<br>SERVICE<br>TRUNK<br>Service<br>TRUNK<br>CAS<br>HANDLING<br>ROOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | WATER<br>TREATMENT<br>WATER<br>TREATMENT<br>WATER<br>TREATMENT<br>SERVICE<br>TRUNK                                                                       | REN<br>ES<br>STORES<br>ES<br>ES        | FOREPEAK                               | $\supset$                 |              |            |
| Ĺ                                                                                                                                                                                                                                                                                                                          |                                        |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GW_S<br>:                                                                                                                                                | 8                                      |                                        |                           |              |            |
|                                                                                                                                                                                                                                                                                                                            |                                        |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                          |                                        |                                        |                           |              | -          |
| 10 20                                                                                                                                                                                                                                                                                                                      | ++++++++++++++++++++++++++++++++++++++ | ++++++++++++++++++++++++++++++++++++++          | 90 100 110<br><u>110</u><br><u>100</u> 100<br><u>100</u> 100<br><u>10</u> | ++++++<br>120 130 140                                                                                                                                    | ++++++++++++++++++++++++++++++++++++++ | ++++++++++++++++++++++++++++++++++++++ | 200 210                   |              |            |
|                                                                                                                                                                                                                                                                                                                            |                                        |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                          |                                        | _                                      | PROJECT TITLE<br>MARINE A | ATLANTIC ROP | AX FERRY   |
|                                                                                                                                                                                                                                                                                                                            |                                        |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                          | ×                                      | +                                      | DRAWING TITLE             |              | MENT       |
|                                                                                                                                                                                                                                                                                                                            |                                        |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                          |                                        | +                                      | SHEET SIZE                | DRAWN BY     |            |
|                                                                                                                                                                                                                                                                                                                            |                                        |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                          |                                        | X                                      | ANSI B                    | R.C.         | 02/03/2023 |
|                                                                                                                                                                                                                                                                                                                            |                                        |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                          | т                                      |                                        | 1:600                     | A.B.         | 03/16/2023 |
|                                                                                                                                                                                                                                                                                                                            |                                        | 2                                               | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                          |                                        |                                        | AP-03                     |              | 6 OF 7     |
| 1                                                                                                                                                                                                                                                                                                                          | 2                                      | 3                                               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5                                                                                                                                                        | 6                                      | 7                                      |                           |              | 8          |

|   | LUBE OIL | LO-S          | 22.5                         | 47.5              | -3.8             | 3.5                                               | BALLAST           | BT_6P                               | 378.0  | 35.6         | 6.3                          | 3.53              |                             |                     |                              |                                                       |        |                              |                                        |                                       |                                                    |
|---|----------|---------------|------------------------------|-------------------|------------------|---------------------------------------------------|-------------------|-------------------------------------|--------|--------------|------------------------------|-------------------|-----------------------------|---------------------|------------------------------|-------------------------------------------------------|--------|------------------------------|----------------------------------------|---------------------------------------|----------------------------------------------------|
|   | LUBE OIL | LO-P          | 22.5                         | 47.5              | 3.8              | 3.5                                               | BALLAST           | BT_5S                               | 209.8  | 79.0         | -10.0                        | 1.1               | SEA CHEST                   | SC_4S               | 8.1                          | 69.0                                                  | -13.0  | 3.0                          |                                        |                                       |                                                    |
| 6 | WATER    | GW-S          | 204                          | 124.8             | -10.2            | 5.0                                               | BALLAST           | BT_5P                               | 209.8  | 79.0         | 10.0                         | 1.1               | SEA CHEST                   | SC_4P               | 8.1                          | 69.0                                                  | 13.0   | 3.0                          |                                        |                                       |                                                    |
|   | WATER    | BW-P          | 204                          | 124.8             | 10.2             | 5.0                                               | BALLAST           | BT_4S                               | 215.1  | 109.7        | -9.8                         | 1.1               | SEA CHEST                   | SC_3S               | 7.28                         | 69.0                                                  | -12.2  | 1.2                          |                                        |                                       |                                                    |
|   | WATER    | FW-S          | 192.0                        | 134.6             | -9.1             | 5.0                                               | BALLAST           | BT_4P                               | 215.1  | 109.7        | 9.8                          | 1.1               | SEA CHEST                   | SC_3P               | 7.28                         | 69.0                                                  | 12.2   | 1.2                          |                                        |                                       |                                                    |
|   | WATER    | FW-P          | 192.0                        | 134.6             | 9.1              | 5.0                                               | BALLAST           | BT_3S                               | 143.4  | 128.6        | -9.2                         | 1.2               | SEA CHEST                   | SC_2S               | 8.1                          | 89.0                                                  | -13.0  | 3.0                          |                                        |                                       |                                                    |
|   | WATER    | TW-C          | 77.6                         | 76.05             | 0.0              | 1.0                                               | BALLAST           | BT_3P                               | 143.4  | 128.6        | 9.2                          | 1.2               | SEA CHEST                   | SC_2P               | 8.1                          | 89.0                                                  | 13.0   | 3.0                          |                                        |                                       |                                                    |
|   | MDO      | DAY-S         | 90.0                         | 68.5              | -2.5             | 5.0                                               | BALLAST           | BT_2S                               | 274.7  | 148.9        | -3.6                         | 1.2               | SEA CHEST                   | SC_1S               | 8.1                          | 89.0                                                  | -12.2  | 1.2                          |                                        |                                       |                                                    |
|   | MDO      | DAY-P         | 90.0                         | 68.5              | 2.5              | 5.0                                               | BALLAST           | BT_2P                               | 274.7  | 148.9        | 3.6                          | 1.2               | SEA CHEST                   | SC_1P               | 8.1                          | 89.0                                                  | 12.2   | 1.2                          |                                        |                                       |                                                    |
|   | MDO      | DO-C          | 67.5                         | 43.75             | 0.0              | 3.75                                              | BALLAST           | BT_1C                               | 256.4  | 170.1        | 0.0                          | 1.2               | SEA BAY                     | SB_2C               | 84.4                         | 69.0                                                  | 0.0    | 1.0                          |                                        |                                       |                                                    |
|   | LNG      | LNG_S         | 452.0                        | 110.0             | -7.3             | 5.75                                              | SLUDGE            | SL_C                                | 54.0   | 46.5         | 0.0                          | 3.5               | SEA BAY                     | -<br>SB_1C          | 87.5                         | 89.0                                                  | 0.0    | 1.0                          |                                        |                                       | (                                                  |
|   | LNG      | LNG_P         | (IVI <sup>-</sup> )<br>452.0 | (FROM 0)<br>110.0 | (FROM CL)<br>7.3 | (FROM BL)<br>5.75                                 | DIRTY OIL         | DIRTY_C                             | 36.0   | 49.0         |                              | 3.5               | BALLAST                     | BT_6S               | (IVI <sup>-</sup> )<br>378.0 | (FROM 0)<br>35.6                                      | -6.3   | 3.53                         |                                        |                                       |                                                    |
| 5 | TYPE     | TANK          | VOLUME                       | LCG               | TCG              | VCG                                               | TYPE              | TANK                                | VOLUME | LCG          | TCG                          | VCG               | TYPE                        | TANK                | VOLUME                       | LCG                                                   | TCG    | VCG                          |                                        |                                       |                                                    |
|   |          | <u> </u> ++++ | ++++++<br>10                 | ++++++            | 1<br>20          | <del>                                      </del> | <u>++++</u><br>40 | <mark>┼┼┼┼┼</mark><br><sub>50</sub> | ++++++ | ++++++<br>60 | <u>+ + + + ∔ + + +</u><br>70 | +++++++++++<br>80 |                             | +++++++<br>)<br>PL# |                              | <mark>                 </mark><br>110<br><u>к тор</u> | ++++++ | <del>          </del><br>120 | ++++++++++++++++++++++++++++++++++++++ | +++++<br>150                          | <mark>                                     </mark> |
|   |          |               |                              |                   |                  | X                                                 |                   |                                     | L.M.   | E.SUMP       | X                            | BT_55             |                             | `.<br>∕             |                              | BT_45                                                 |        |                              |                                        |                                       |                                                    |
|   |          |               |                              |                   |                  | E                                                 | styles<br>v       | ∞                                   | См.    | E.SUMP       |                              |                   | · .                         |                     |                              |                                                       | · \    |                              | $\bigvee$                              | - 5545                                |                                                    |
| 4 |          |               |                              |                   |                  | - P                                               |                   |                                     |        |              |                              | $\rightarrow$     | ·                           | / \                 |                              | `                                                     |        | l .´`.                       |                                        | < · ·                                 |                                                    |
| 4 |          |               |                              |                   |                  | ł                                                 | · /               |                                     | См.    | E.SUMP       |                              |                   | .' ∦<br>√≪ <sup>88_10</sup> | `<br>Xo             |                              | •´   `                                                |        | `                            |                                        | · · · · · · · · · · · · · · · · · · · | >                                                  |







| <br>0 | · · · · · · · · · · · · · · · · · · · |          |   | 1 | r i i i i i i i i i i i i i i i i i i i |          |  |
|-------|---------------------------------------|----------|---|---|-----------------------------------------|----------|--|
|       |                                       | <b>ζ</b> |   | 1 |                                         | <b>n</b> |  |
|       |                                       | <b>j</b> | - | * |                                         |          |  |

|                                   | 7                                                                    |                   |                                                        | 8                                                                       | - |
|-----------------------------------|----------------------------------------------------------------------|-------------------|--------------------------------------------------------|-------------------------------------------------------------------------|---|
|                                   |                                                                      |                   |                                                        |                                                                         | 1 |
| ED EOW<br>THRUSTER<br>COMPARTMENT | FOREPEAK                                                             | 1                 |                                                        |                                                                         | 2 |
| 170 180                           | 190 200                                                              | 210               |                                                        |                                                                         | 3 |
|                                   | FOREPEAK                                                             |                   |                                                        |                                                                         | 4 |
|                                   | PROJECT TITL<br>MARINI                                               | H<br>E<br>E ATLAN |                                                        |                                                                         | 5 |
|                                   | GEN<br>SHEET SIZE<br>ANSI B<br>SCALE<br>1:600<br>DRAWING NO<br>AP-03 |                   | RRANGE<br>/N BY<br>R.C.<br>KED BY<br>A.B.<br>REV.<br>0 | MENT<br>DATE<br>02/03/2023<br>DATE<br>03/16/2023<br>PAGE<br>7 OF 7<br>8 | 6 |





## **APPENDIX L – MACHINERY ARRANGEMENTS**

|   | 1            | 2                                                                                                                    | 3                                                                                                                                                                                                                                                                  | 4                                                                                                                                                                                        | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6                                                        | 7 |                                                                                                |                                                                                                                                              | 8                                                                |
|---|--------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|---|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| 1 |              |                                                                                                                      |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          |   |                                                                                                |                                                                                                                                              | 1                                                                |
|   |              |                                                                                                                      |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          |   |                                                                                                |                                                                                                                                              |                                                                  |
| 2 |              |                                                                                                                      |                                                                                                                                                                                                                                                                    | MAIN<br>VERTICAL<br>ZONE<br>VEHICLE DECK<br>VEHICLE DECK<br>VEHICLE DECK<br>VEHICLE DECK<br>VEHICLE DECK<br>VEHICLE DECK<br>VEHICLE DECK<br>VEHICLE DECK<br>VEHICLE DECK<br>VEHICLE DECK | Image: marked bit with the service of the service | TT<br>TT<br>TT<br>TT<br>TT<br>TT<br>TT<br>TT<br>TT<br>TT |   |                                                                                                | CK<br>0 ABL<br>CK<br>0 ABL<br>CK<br>0 ABL<br>CK<br>0 ABL<br>CK<br>ABL<br>CK<br>ABL<br>CK<br>ABL<br>CK<br>ABL<br>CK<br>ABL<br>CK<br>ABL<br>CK | 2                                                                |
| 4 | _            |                                                                                                                      |                                                                                                                                                                                                                                                                    | STARBOARD                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          |   |                                                                                                |                                                                                                                                              | 4                                                                |
|   |              |                                                                                                                      |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          |   |                                                                                                |                                                                                                                                              |                                                                  |
| 5 | PRINCIPAL PA | ARTICULARS<br>204.0<br>204.0<br>CULARS (m) 188.0<br>28.0<br>17.0<br>6.7<br>24,578<br>100<br>1000<br>TERS) 3263<br>1A | ABBREVIATIONS<br>ALS - AIR LUBRICATION SYSTEM<br>BW - BLACK WATER<br>ECR - ENGINE CONTROL ROOM<br>ESC - ESCAPE HATCH<br>F.O FUEL OIL<br>FW - FRESH WATER<br>GW - GREY WATER<br>LNG - LIQUIFIED NATUAL GAS<br>L.O LUBRICATION OIL<br>SB - SEA BAY<br>SC - SEA CHEST |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          |   | PROJECT TITLE<br>MARINE A<br>DRAWING TITLE<br>MACHII<br>SHEET SIZE<br>ANSI B<br>SCALE<br>1:600 | ATLANTIC ROPA<br>NERY ARRANGE<br>DRAWN BY<br>R.C.<br>CHECKED BY<br>A.B.                                                                      | 5<br>X FERRY<br>MENT<br>DATE<br>04/07/2023<br>DATE<br>04/15/2023 |
|   |              | 21,000                                                                                                               | 2                                                                                                                                                                                                                                                                  |                                                                                                                                                                                          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                          |   | AP-05                                                                                          | REV.                                                                                                                                         | 1 OF 3                                                           |
|   | I            | L <b>Z</b>                                                                                                           | J                                                                                                                                                                                                                                                                  | 4                                                                                                                                                                                        | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | U                                                        | 1 |                                                                                                |                                                                                                                                              | 0                                                                |

| 1 | 2 | 3 | 4 | 5 | 6 |
|---|---|---|---|---|---|



| 1 | <b>^</b> | <b>^</b> | / |              | / |
|---|----------|----------|---|--------------|---|
|   |          | K        | 1 | <br><b>1</b> |   |
|   | 2        | J        | • | J            | , |

|                 |            | PROJECT TITLE |          |           |                       | 5 |
|-----------------|------------|---------------|----------|-----------|-----------------------|---|
|                 |            | MARINE        | ATLAN    | ITIC ROPA | X FERRY               |   |
|                 |            | DRAWING TITL  | E        |           |                       |   |
| $\overline{\ }$ |            | МАСН          | INERY    | ARRANGI   | EMENT                 |   |
|                 |            |               |          |           | <b>D</b> 4 <b>T C</b> |   |
|                 |            | SHEET SIZE    | DRAWN BY |           | DATE                  |   |
|                 |            | ANSI B        |          | R.C.      | 04/07/2023            |   |
|                 |            | SCALE         | CHEC     | KED BY    | DATE                  |   |
|                 |            | 1:600         |          | A.B.      | 04/15/2023            | 6 |
| l ŀ             | <b>XAN</b> | DRAWING NO.   |          | REV.      | PAGE                  |   |
|                 |            | AP-05         |          | 0         | 2 OF 3                |   |
|                 | 7          |               |          |           | 8                     | - |



| 1 |      |                                 |                                |                                                                | NA     |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                              |                                         |
|---|------|---------------------------------|--------------------------------|----------------------------------------------------------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------|
| 2 |      |                                 | BT_6P<br>BT_6P<br>BT_6S        | avalder<br>10v310F<br>10v310F<br>10v310F<br>10v310F<br>10v310F |        | SHOPS<br>AUXILLIARY<br>MACHINERY<br>SPACE<br>(263 M <sup>2</sup> )<br>PUMP<br>ROOM 2<br>(206 M <sup>2</sup> )<br>FIN STABILIZER<br>FIN STABILIZER | VOID<br>WATE<br>WATE<br>WATE<br>WATE<br>WATE<br>WATE<br>WATE<br>WATE<br>WATE<br>WATE<br>VOID<br>WATE<br>VOID<br>WATE<br>VOID<br>WATE<br>VOID<br>WATE<br>VOID<br>VOID<br>WATE<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID<br>VOID | Rent Stores<br>FW_P<br>WATER<br>TREATMENT<br>(122 M <sup>2</sup> )<br>Stores<br>FW_S<br>VOID | PUMP<br>ROOM 3<br>(151 M <sup>2</sup> ) |
|   |      | 0 10 20                         | 30 40 E                        | 50 60<br>RS                                                    | 70     | 80 90 100<br>00<br>PLAN ABOVE T/<br>AIR LL                                                                                                        | 110 120<br>ANK TOP<br>JBRICATION SYSTEM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 130 140                                                                                      | 150 160 170                             |
| 2 | ΟΤΥ  | COMPONENT                       | DESCRIPTION                    | CAPACITY                                                       |        | COMPONENT                                                                                                                                         | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CAPACITY                                                                                     |                                         |
| 3 | 2    | MAIN GENSET                     | WARTSILA W10V31DF              | 6000 kW @ 720 RPM                                              |        | COMPRESSOR                                                                                                                                        | TBD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TBD                                                                                          |                                         |
|   | 2    | MAIN GENSET                     | WARTSILA W8V31DF               | 4800 kW @ 750 RPM                                              | -00    | DIRIFIE                                                                                                                                           | RS AND SEPARATORS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                              |                                         |
|   | 2    | EMERGENCY GENERATOR             |                                | 4640 kW @ 750 RPM                                              |        |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CAPACITY                                                                                     |                                         |
|   | TRD  | BATTERY                         |                                | 9.3 MWh                                                        |        |                                                                                                                                                   | ALEALAVALEM152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 40M <sup>3</sup> /HR                                                                         |                                         |
|   |      |                                 | TBD                            | TBD                                                            | 2<br>A |                                                                                                                                                   | ALFA ELIMINATOR 180-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30M <sup>3</sup> /HR                                                                         |                                         |
|   | 2    | PODDED PROPULSOR                |                                | 7350 kW                                                        | +<br>1 | EMERGENCY GENERATOR FO PURIFIER                                                                                                                   | ALFA LAVAL FM152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30M <sup>3</sup> /HR                                                                         |                                         |
|   | 2    | BOW THRUSTER                    | WARTSILA WTT-16                | 1650 kW @ 980 RPM                                              | '<br>1 | EMERGENCY GENERATOR LO PURIFIER                                                                                                                   | ALFA ELIMINATOR 180-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20M <sup>3</sup> /HR                                                                         |                                         |
|   | 2    | PURIFIE                         | RS AND SEPARATORS              |                                                                | 1      | OILY WATER SEPARATOR                                                                                                                              | ALFA ELIMINATOR PureBilge 5015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5000L/HR. 15 PPM                                                                             |                                         |
|   | QTY. | COMPONENT                       | DESCRIPTION                    | CAPACITY                                                       | . '    | POTABLE WATER. BLACK WA                                                                                                                           | ATER, GREY WATER, AND WASTE D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ISPOSAL                                                                                      |                                         |
| 4 | 2    | MAIN ENGINE FO PURIFIER         | ALFA LAVAL FM152               | 40M <sup>3</sup> /HR                                           | QTY.   | COMPONENT                                                                                                                                         | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CAPACITY                                                                                     |                                         |
|   | 4    | MAINE ENGINE LO PURIFIER        | ALFA ELIMINATOR 180-14         | 30M <sup>3</sup> /HR                                           | 2      | POTABLE WATER PUMP                                                                                                                                | TBD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TBD                                                                                          |                                         |
|   | 1    | EMERGENCY GENERATOR FO PURIFIER | ALFA LAVAL FM152               | 30M <sup>3</sup> /HR                                           | 1      | GREY WATER PUMP                                                                                                                                   | TBD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TBD                                                                                          |                                         |
|   | 1    | EMERGENCY GENERATOR LO PURIFIER | ALFA ELIMINATOR 180-14         | 20M <sup>3</sup> /HR                                           | 1      | BLACK WATER PUMP                                                                                                                                  | TBD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TBD                                                                                          |                                         |
| - | 1    | OILY WATER SEPARATOR            | ALFA ELIMINATOR PureBilge 5015 | 5000L/HR, 15 PPM                                               | 1      | SEWAGE TREATMENT PLANT                                                                                                                            | WARTSILA STC-60-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 100,800 L/DAY                                                                                |                                         |
|   |      | COOL                            | LING WATER PUMPS               |                                                                | 2      | HYDROPHORE                                                                                                                                        | TBD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TBD                                                                                          |                                         |
|   | QTY. | COMPONENT                       | DESCRIPTION                    | CAPACITY                                                       | - 1    | FRESHWATER GENERATOR                                                                                                                              | WARTSILA HITE 120-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 120 TONNES/DAY                                                                               |                                         |
|   | 4    | SEAWATER PUMP                   | TBD                            | TBD                                                            | - 1    | SHREDDER                                                                                                                                          | TBD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TBD                                                                                          |                                         |
| 5 | 4    | FRESHWATER PUMP                 | TBD                            | TBD                                                            | 1      | GLASS CRUSHER                                                                                                                                     | TBD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TBD                                                                                          |                                         |
|   | 2    | SEAWATER HARBOUR PUMP           | TBD                            | TBD                                                            | 1      | INCINERATOR                                                                                                                                       | TBD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TBD                                                                                          | (                                       |
|   | 4    | FRESHWATER HARBOUR PUMP         | TBD                            | TBD                                                            |        |                                                                                                                                                   | FIRE FIGHTING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                              |                                         |
|   |      | BILGE                           | AND BALLAST PUMPS              |                                                                | QTY.   | COMPONENT                                                                                                                                         | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CAPACITY                                                                                     |                                         |
|   | QTY. | COMPONENT                       | DESCRIPTION                    | CAPACITY                                                       | 2      | FIRE PUMPS                                                                                                                                        | TBD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TBD                                                                                          |                                         |
|   | 6    | BILGE PUMP                      | TBD                            | TBD                                                            | 2      | MANUAL FIRE PUMP                                                                                                                                  | TBD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TBD                                                                                          |                                         |
|   | 6    | BALLAST PUMP                    | TBD                            | TBD                                                            |        |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                              |                                         |

 FIN STABILISATION

 QTY.
 COMPONENT
 DESCRIPTION

6 2 ACTIVE FIN STABILISERS KONGSBERG AQUARIUS A 100

Г

CAPACITY

-

|                                      | 7        |                                                                | 8    |                                              |                                                            |   |
|--------------------------------------|----------|----------------------------------------------------------------|------|----------------------------------------------|------------------------------------------------------------|---|
|                                      |          |                                                                |      |                                              |                                                            | 1 |
| CATED BOW<br>THRUSTER<br>COMPARTMENT | FOREPEAK | >                                                              |      |                                              |                                                            | 2 |
| 170                                  | 180 190  | 200 210                                                        | 1    |                                              |                                                            | 3 |
|                                      |          |                                                                |      |                                              |                                                            | 4 |
| ×                                    | +        | PROJECT TITLE<br>MARINE<br>DRAWING TITLE                       |      |                                              | X FERRY                                                    | 5 |
|                                      |          | SHEET SIZE<br>ANSI B<br>SCALE<br>1:600<br>DRAWING NO.<br>AP-05 | DRAW | /N BY<br>R.C.<br>KED BY<br>A.B.<br>REV.<br>0 | DATE<br>04/07/2023<br>DATE<br>04/15/2023<br>PAGE<br>3 OF 3 | 6 |
|                                      | 7        |                                                                |      |                                              | 8                                                          |   |





## APPENDIX M – CAPACITY PLAN



| 1 | 2                      | 3                                    | 4                                                | 5                    | 6                            | 7                                     |                             | 8          |   |
|---|------------------------|--------------------------------------|--------------------------------------------------|----------------------|------------------------------|---------------------------------------|-----------------------------|------------|---|
|   |                        |                                      |                                                  | l                    |                              |                                       |                             |            |   |
| 1 |                        |                                      |                                                  |                      |                              |                                       |                             |            | 1 |
| 1 |                        |                                      |                                                  |                      |                              |                                       |                             |            | I |
|   |                        |                                      | ================================                 |                      |                              |                                       |                             |            |   |
| _ |                        |                                      | لي المراجع                                       |                      |                              | _                                     |                             |            |   |
|   | UNALLOCATED SWITHCBOAN | RD ECR                               | DOMESTIC GAS<br>MACHINERY HANDLING<br>SPACE ROOM | DESALINATOR STORES S | STORES STORES STORES COMPART | ER FOREPEAK                           |                             |            |   |
|   |                        |                                      | Des                                              |                      |                              |                                       |                             |            |   |
| 2 |                        | ENGINE ROOM                          |                                                  | GW S                 |                              |                                       |                             |            | 2 |
|   |                        |                                      |                                                  | ¥010                 |                              |                                       |                             |            |   |
|   |                        |                                      |                                                  |                      |                              |                                       |                             |            |   |
|   | 20 30 40               | 50 60 70 80                          | 90 100 110<br>100 110<br>300<br>PLANABOVE D DECK | 120 130 140          | 150 160 170                  | 1   1   1   1   1   1   1   1   1   1 | 210                         |            |   |
|   |                        |                                      | 5000 ABL                                         |                      |                              |                                       |                             |            |   |
| 3 |                        |                                      |                                                  |                      |                              |                                       |                             |            | 3 |
|   |                        |                                      |                                                  |                      |                              |                                       |                             |            |   |
|   |                        |                                      | Fin stabiliser                                   |                      |                              |                                       |                             |            |   |
|   | PUMP<br>ROOM 1         | ENGINE ROOM                          |                                                  |                      |                              |                                       |                             |            |   |
|   |                        |                                      |                                                  | water water s        | STORES PUMP                  |                                       |                             |            |   |
| 4 | AT JAS ALO             |                                      | SPACE ROOM 2                                     |                      | ROOM 3 UNALLOCATED COMPART   | MENT FUREFEAR                         |                             |            | 4 |
| - | PUMP<br>ROOM 1         | ENGINE ROOM                          |                                                  | EW S                 |                              |                                       |                             |            | - |
|   |                        |                                      | FIN STABILISER                                   |                      |                              |                                       |                             |            |   |
| - |                        |                                      |                                                  |                      |                              |                                       |                             |            |   |
|   | 20 30 40               | ++++++++++++++++++++++++++++++++++++ |                                                  | 120 130 140          | 150 160 170                  | 180         190         200           | 210                         |            |   |
| _ |                        |                                      | PLAN ABOVE TANK TOP<br>2000 ABL                  |                      |                              |                                       |                             |            | _ |
| 5 |                        |                                      |                                                  |                      |                              | PROJECT                               | TITLE<br>RINE ATLANTIC ROP. |            | 5 |
|   |                        |                                      |                                                  |                      |                              |                                       |                             |            |   |
| _ |                        |                                      |                                                  |                      |                              |                                       | TANK CAPACITY P             | LAN        |   |
|   |                        |                                      |                                                  |                      | -{                           |                                       | ZE DRAWN BY                 | DATE       |   |
|   |                        |                                      |                                                  |                      |                              |                                       | 3 R.C.                      | 03/05/2023 |   |
| 6 |                        |                                      |                                                  |                      |                              | 1:600                                 | A.B.                        | 03/8/2023  | 6 |
|   |                        |                                      |                                                  |                      | TE                           |                                       | NO. REV.                    | PAGE       |   |
| 1 | 2                      | 3                                    | 4                                                | 5                    | 6                            | 7                                     | -04 0                       | 8          |   |

|        |           |               |                                               |                                     |                    | V                                                 |                                                   |                  | × A          |       | X                           |                                                  |                      |                 |                               |                              |
|--------|-----------|---------------|-----------------------------------------------|-------------------------------------|--------------------|---------------------------------------------------|---------------------------------------------------|------------------|--------------|-------|-----------------------------|--------------------------------------------------|----------------------|-----------------|-------------------------------|------------------------------|
|        | ŀ         | ++++++++<br>1 | <u>                                      </u> | +++++++++<br>20                     | +++++++<br>30      | <del>                                      </del> | <del>                                      </del> | 60               | ++++<br>70 8 |       | 90<br><u>PL</u>             | 100<br><b>DO</b><br>AN BELOW TANK TO<br>2000 ABL | +++++++<br>110<br>PP | ++++++++<br>120 | +++++<br>130                  | <mark>↓↓↓↓↓↓↓↓</mark><br>140 |
|        | TYPE      | TANK          | VOLUME<br>(M <sup>3</sup> )                   | DENSITY<br>(TONNES/M <sup>3</sup> ) | WEIGHT<br>(TONNES) | LCG<br>(FROM 0)                                   | TCG<br>(FROM C <sub>L</sub> )                     | VCG<br>(FROM BL) | TYPE         | TANK  | VOLUME<br>(M <sup>3</sup> ) | DENSITY<br>(TONNES/M <sup>3</sup> )              | WEIGHT<br>(TONNES)   | LCG<br>(FROM 0) | TCG<br>(FROM C <sub>L</sub> ) | VCG<br>(FROM BL)             |
| 3      | LNG       | LNG_P         | 452.0                                         | 0.45                                | 203.4              | 110.0                                             | 7.3                                               | 5.75             | BALLAST      | BT_6S | 378.0                       | 1.025                                            | 387.5                | 35.6            | -6.3                          | 3.53                         |
|        | LNG       | LNG_S         | 452.0                                         | 0.45                                | 203.4              | 110.0                                             | -7.3                                              | 5.75             | SEA BAY      | SB_1C | 87.5                        | 1.025                                            | 89.7                 | 89.0            | 0.0                           | 1.0                          |
|        | MDO       | DO-C          | 67.5                                          | 0.85                                | 53.4               | 43.75                                             | 0.0                                               | 3.75             | SEA BAY      | SB_2C | 84.4                        | 1.025                                            | 86.5                 | 69.0            | 0.0                           | 1.0                          |
|        | MDO       | DAY-P         | 90.0                                          | 0.85                                | 76.5               | 68.5                                              | 2.5                                               | 5.0              | SEA CHEST    | SC_1P | 8.1                         | 1.025                                            | 8.3                  | 89.0            | 12.2                          | 1.2                          |
| $\neg$ | MDO       | DAY-S         | 90.0                                          | 0.85                                | 76.5               | 68.5                                              | -2.5                                              | 5.0              | SEA CHEST    | SC_1S | 8.1                         | 1.025                                            | 8.3                  | 89.0            | -12.2                         | 1.2                          |
|        | WATER     | TW-C          | 77.6                                          | 1.00                                | 77.6               | 76.05                                             | 0.0                                               | 1.0              | SEA CHEST    | SC_2P | 8.1                         | 1.025                                            | 8.3                  | 89.0            | 13.0                          | 3.0                          |
|        | WATER     | FW-P          | 192.0                                         | 1.00                                | 192.0              | 134.6                                             | 9.1                                               | 5.0              | SEA CHEST    | SC_2S | 8.1                         | 1.025                                            | 8.3                  | 89.0            | -13.0                         | 3.0                          |
| ,      | WATER     | FW-S          | 192.0                                         | 1.00                                | 192.0              | 134.6                                             | -9.1                                              | 5.0              | SEA CHEST    | SC_3P | 7.28                        | 1.025                                            | 7.5                  | 69.0            | 12.2                          | 1.2                          |
| 4      | WATER     | BW-P          | 204                                           | 1.00                                | 204                | 124.8                                             | 10.2                                              | 5.0              | SEA CHEST    | SC_3S | 7.28                        | 1.025                                            | 7.5                  | 69.0            | -12.2                         | 1.2                          |
|        | WATER     | GW-S          | 204                                           | 1.00                                | 204                | 124.8                                             | -10.2                                             | 5.0              | SEA CHEST    | SC_4P | 8.1                         | 1.025                                            | 8.3                  | 69.0            | 13.0                          | 3.0                          |
|        | LUBE OIL  | LO-P          | 22.5                                          | 0.95                                | 21.4               | 47.5                                              | 3.8                                               | 3.5              | SEA CHEST    | SC_4S | 8.1                         | 1.025                                            | 8.3                  | 69.0            | -13.0                         | 3.0                          |
|        | LUBE OIL  | LO-S          | 22.5                                          | 0.95                                | 21.4               | 47.5                                              | -3.8                                              | 3.5              |              |       |                             |                                                  |                      |                 |                               |                              |
|        | DIRTY OIL | DIRTY_C       | 36.0                                          | 0.95                                | 34.2               | 49.0                                              | 0.0                                               | 3.5              |              |       |                             |                                                  |                      |                 |                               |                              |
|        | SLUDGE    | SL_C          | 54.0                                          | 0.95                                | 51.3               | 46.5                                              | 0.0                                               | 3.5              |              |       |                             |                                                  |                      |                 |                               |                              |
|        | BALLAST   | BT_1C         | 256.4                                         | 1.025                               | 262.8              | 170.1                                             | 0.0                                               | 1.2              |              |       |                             |                                                  |                      |                 |                               |                              |
| F      | BALLAST   | BT_2P         | 274.7                                         | 1.025                               | 281.6              | 148.9                                             | 3.6                                               | 1.2              |              |       |                             |                                                  |                      |                 |                               |                              |
| J      | BALLAST   | BT_2S         | 274.7                                         | 1.025                               | 281.6              | 148.9                                             | -3.6                                              | 1.2              |              |       |                             |                                                  |                      |                 |                               |                              |
|        | BALLAST   | BT_3P         | 143.4                                         | 1.025                               | 247.0              | 128.6                                             | 9.2                                               | 1.2              |              |       |                             |                                                  |                      |                 |                               |                              |
|        | BALLAST   | BT_3S         | 143.4                                         | 1.025                               | 247.0              | 128.6                                             | -9.2                                              | 1.2              |              |       |                             |                                                  |                      |                 |                               |                              |
|        | BALLAST   | BT_4P         | 215.1                                         | 1.025                               | 220.5              | 109.7                                             | 9.8                                               | 1.1              |              |       |                             |                                                  |                      |                 |                               |                              |
|        | BALLAST   | BT_4S         | 215.1                                         | 1.025                               | 220.5              | 109.7                                             | -9.8                                              | 1.1              |              |       |                             |                                                  |                      |                 |                               |                              |
|        | BALLAST   | BT_5P         | 209.8                                         | 1.025                               | 215.0              | 79.0                                              | 10.0                                              | 1.1              |              |       |                             |                                                  |                      |                 |                               |                              |
|        | BALLAST   | BT_5S         | 209.8                                         | 1.025                               | 215.0              | 79.0                                              | -10.0                                             | 1.1              |              |       |                             |                                                  |                      |                 |                               |                              |
| 6      | BALLAST   | BT_6P         | 378.0                                         | 1.025                               | 387.5              | 35.6                                              | 6.3                                               | 3.53             |              |       |                             |                                                  |                      |                 |                               |                              |



|     | 7        |                                                                       |      |                                                          | 8                                                         | - |
|-----|----------|-----------------------------------------------------------------------|------|----------------------------------------------------------|-----------------------------------------------------------|---|
|     |          |                                                                       |      |                                                          |                                                           | 1 |
|     | FOREPEAK | >                                                                     |      |                                                          |                                                           | 2 |
| 170 | 180 190  | 200 210                                                               | )    |                                                          |                                                           | 3 |
|     |          |                                                                       |      |                                                          |                                                           | 4 |
| ×   | +×       | PROJECT TITLE<br>MARINE<br>DRAWING TITLI                              |      |                                                          | AX FERRY                                                  | 5 |
|     |          | IAI<br>SHEET SIZE<br>ANSI B<br>SCALE<br>1:600<br>DRAWING NO.<br>AP-04 | DRAW | ACTIY PL<br>/N BY<br>R.C.<br>KED BY<br>A.B.<br>REV.<br>0 | DATE<br>03/05/2023<br>DATE<br>03/8/2023<br>PAGE<br>3 OF 3 | 6 |
|     | 7        |                                                                       |      |                                                          | 8                                                         |   |





# APPENDIX N – AREA/VOLUMES SUMMARY
|   | 1                                                                                                                                                    | 2                                                                        | 3                                                                                                                                                                                                                                                                  | 4                                                                                                                                                                                        | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7             |                                                                    |                                                                                         | 8                                                               |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| 1 |                                                                                                                                                      |                                                                          |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |                                                                    |                                                                                         | 1                                                               |
|   |                                                                                                                                                      |                                                                          |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |                                                                    |                                                                                         |                                                                 |
| 2 |                                                                                                                                                      |                                                                          |                                                                                                                                                                                                                                                                    | MAIN<br>VERTICAL<br>ZONE<br>VEHICLE DECK<br>VEHICLE DECK<br>VEHICLE DECK<br>VEHICLE DECK<br>VEHICLE DECK<br>VEHICLE DECK<br>VEHICLE DECK<br>VEHICLE DECK<br>VEHICLE DECK<br>VEHICLE DECK | Image: Construction of the service | Image: stores     stores       stores     stores |               |                                                                    | S<br>BBL<br>S<br>BBL<br>S<br>BBL<br>S<br>BBL<br>S<br>S<br>BL<br>S<br>S<br>C<br>OP<br>BL | 2                                                               |
| 4 |                                                                                                                                                      |                                                                          |                                                                                                                                                                                                                                                                    | STARBOARD                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |                                                                    |                                                                                         | 4                                                               |
| 5 | PRINCIPAL PA<br>LENGTH OVERALL (m)<br>LENGTH BETWEEN PERPENDIO<br>MOULDED BEAM (m)<br>MOULDED DEPTH (m)<br>DESIGN DRAFT (m)<br>DISPLACEMENT (TONNES) | ARTICULARS<br>204.0<br>CULARS (m) 188.0<br>28.0<br>17.0<br>6.7<br>24,578 | ABBREVIATIONS<br>ALS - AIR LUBRICATION SYSTEM<br>BW - BLACK WATER<br>ECR - ENGINE CONTROL ROOM<br>ESC - ESCAPE HATCH<br>F.O FUEL OIL<br>FW - FRESH WATER<br>GW - GREY WATER<br>LNG - LIQUIFIED NATUAL GAS<br>L.O LUBRICATION OIL<br>SB - SEA BAY<br>SC - SEA CHEST |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               | ROJECT TITLE<br>MARINE AT<br>RAWING TITLE<br>MACHIN                | ILANTIC ROPA                                                                            | X FERRY                                                         |
| 6 | COMPLEMENT<br>PASSENGER CAPACITY<br>VEHICLE CAPACITY (LANE MET<br>ICE CLASS<br>INSTALLED POWER (kW)                                                  | 100<br>1000<br>TERS) 3263<br>1A<br>21,600<br><b>2</b>                    | 3                                                                                                                                                                                                                                                                  | 4                                                                                                                                                                                        | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | S<br>RAK<br>7 | GHEET SIZE D<br>ANSI B<br>GCALE C<br>1:600<br>DRAWING NO.<br>AP-05 | DRAWN BY<br>R.C.<br>CHECKED BY<br>A.B.<br>REV.<br>0                                     | DATE<br>04/07/2023<br>DATE<br>04/15/2023<br>PAGE<br>1 OF 3<br>8 |

| 1 | 2 | 3 | 4 | 5 | 6 |
|---|---|---|---|---|---|



| 1 | • | •   |   | F |   |  |
|---|---|-----|---|---|---|--|
|   | - |     | / |   | 6 |  |
|   |   | J J | 4 | J | 0 |  |

|                 |            | PROJECT TITLE               |            |                       |            | 5 |
|-----------------|------------|-----------------------------|------------|-----------------------|------------|---|
|                 |            | MARINE ATLANTIC ROPAX FERRY |            |                       |            |   |
|                 | +          | DRAWING TITL                | E          |                       |            |   |
| $\overline{\ }$ |            | MACHINERY ARRANGEMENT       |            |                       |            |   |
|                 |            |                             |            | <b>D</b> 4 <b>T C</b> |            |   |
|                 |            | SHEET SIZE                  | DRAV       | VN BY                 | DATE       |   |
|                 |            | ANSI B                      | R.C.       |                       | 04/07/2023 |   |
|                 |            | SCALE                       | CHECKED BY |                       | DATE       |   |
|                 |            | 1:600                       | 1:600 A    |                       | 04/15/2023 | 6 |
| l ŀ             | <b>XAN</b> | DRAWING NO.                 |            | REV.                  | PAGE       |   |
|                 |            | AP-05                       | 0          |                       | 2 OF 3     |   |
|                 | 7          |                             |            |                       | 8          | - |



| 1 |                                     |                                 |                                |                                                                | NA                      |                                                                                                                                                   |                                         |                      |                                         |
|---|-------------------------------------|---------------------------------|--------------------------------|----------------------------------------------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------|-----------------------------------------|
| 2 |                                     |                                 | BT_6P<br>BT_6P<br>BT_6S        | avalder<br>10v310F<br>10v310F<br>10v310F<br>10v310F<br>10v310F |                         | SHOPS<br>AUXILLIARY<br>MACHINERY<br>SPACE<br>(263 M <sup>2</sup> )<br>PUMP<br>ROOM 2<br>(206 M <sup>2</sup> )<br>FIN STABILIZER<br>FIN STABILIZER |                                         | REENT RESTORES       | PUMP<br>ROOM 3<br>(151 M <sup>2</sup> ) |
|   |                                     | 0 10 20                         | 30 40 E                        | 50 60<br>RS                                                    | 70                      | 80 90 100<br>DO<br>PLAN ABOVE T/<br>AIR LL                                                                                                        | 110 120<br>ANK TOP<br>JBRICATION SYSTEM | 130 140              | 150 160 170                             |
|   | ΟΤΥ                                 | COMPONENT                       | DESCRIPTION                    | CAPACITY                                                       |                         | COMPONENT                                                                                                                                         | DESCRIPTION                             | CAPACITY             |                                         |
| 3 | 2                                   | MAIN GENSET                     | WARTSILA W10V31DF              | 6000 kW @ 720 RPM                                              |                         | COMPRESSOR                                                                                                                                        | TBD                                     | TBD                  |                                         |
|   | 2                                   | MAIN GENSET                     | WARTSILA W8V31DF               | 4800 kW @ 750 RPM                                              | -00                     | DIRIFIE                                                                                                                                           | RS AND SEPARATORS                       | 100                  |                                         |
|   | 2                                   |                                 |                                | 4640 kW @ 750 RPM                                              |                         |                                                                                                                                                   | DESCRIPTION CAPACITY                    |                      |                                         |
|   | TRD                                 | BATTERY                         |                                | 9.3 MWh                                                        |                         |                                                                                                                                                   |                                         | 40M <sup>3</sup> /HR |                                         |
|   |                                     |                                 | TBD                            | TBD                                                            | 2<br>A                  |                                                                                                                                                   | ALFA ELIMINATOR 180-14                  | 30M <sup>3</sup> /HR |                                         |
|   | 2                                   | PODDED PROPULSOR                |                                | 7350 kW                                                        | +<br>1                  | EMERGENCY GENERATOR FO PURIFIER                                                                                                                   | ALFA LAVAL FM152                        | 30M <sup>3</sup> /HR |                                         |
|   | 2                                   | BOW THRUSTER                    | WARTSILA WTT-16                | 1650 kW @ 980 RPM                                              | '<br>1                  |                                                                                                                                                   |                                         | 20M <sup>3</sup> /HR |                                         |
|   | 2                                   | PIRFIE                          | RS AND SEPARATORS              |                                                                | 1                       | OILY WATER SEPARATOR                                                                                                                              | ALFA ELIMINATOR PureBilae 5015          | 5000L/HR: 15 PPM     |                                         |
|   | QTY. COMPONENT DESCRIPTION CAPACITY |                                 |                                | . '                                                            | POTABLE WATER. BLACK WA | ATER, GREY WATER, AND WASTE D                                                                                                                     | ISPOSAL                                 |                      |                                         |
| 4 | 2                                   | MAIN ENGINE FO PURIFIER         | ALFA LAVAL FM152               | 40M <sup>3</sup> /HR                                           | QTY.                    | COMPONENT                                                                                                                                         | DESCRIPTION                             | CAPACITY             |                                         |
|   | 4                                   | MAINE ENGINE LO PURIFIER        | ALFA ELIMINATOR 180-14         | 30M <sup>3</sup> /HR                                           | 2                       | POTABLE WATER PUMP                                                                                                                                | TBD                                     | TBD                  |                                         |
|   | 1                                   | EMERGENCY GENERATOR FO PURIFIER | ALFA LAVAL FM152               | 30M <sup>3</sup> /HR                                           | 1                       | GREY WATER PUMP                                                                                                                                   | TBD                                     | TBD                  |                                         |
|   | 1                                   | EMERGENCY GENERATOR LO PURIFIER | ALFA ELIMINATOR 180-14         | 20M <sup>3</sup> /HR                                           | 1                       | BLACK WATER PUMP                                                                                                                                  | TBD                                     | TBD                  |                                         |
| - | 1                                   | OILY WATER SEPARATOR            | ALFA ELIMINATOR PureBilge 5015 | 5000L/HR, 15 PPM                                               | 1                       | SEWAGE TREATMENT PLANT                                                                                                                            | WARTSILA STC-60-14                      | 100,800 L/DAY        |                                         |
|   |                                     | COOL                            | LING WATER PUMPS               |                                                                | 2                       | HYDROPHORE                                                                                                                                        | TBD                                     | TBD                  |                                         |
|   | QTY.                                | COMPONENT                       | DESCRIPTION                    | CAPACITY                                                       | - 1                     | FRESHWATER GENERATOR                                                                                                                              | WARTSILA HITE 120-4                     | 120 TONNES/DAY       |                                         |
|   | 4                                   | SEAWATER PUMP                   | TBD                            | TBD                                                            | - 1                     | SHREDDER                                                                                                                                          | TBD                                     | TBD                  |                                         |
| 5 | 4                                   | FRESHWATER PUMP                 | TBD                            | TBD                                                            | 1                       | GLASS CRUSHER                                                                                                                                     | TBD                                     | TBD                  |                                         |
|   | 2                                   | SEAWATER HARBOUR PUMP           | TBD                            | TBD                                                            | 1                       | INCINERATOR                                                                                                                                       | TBD                                     | TBD                  |                                         |
|   | 4                                   | FRESHWATER HARBOUR PUMP         | TBD                            | TBD                                                            |                         |                                                                                                                                                   | FIRE FIGHTING                           |                      |                                         |
|   | BILGE AND BALLAST PUMPS             |                                 |                                | QTY.                                                           | COMPONENT               | DESCRIPTION                                                                                                                                       | CAPACITY                                |                      |                                         |
|   | QTY.                                | COMPONENT                       | DESCRIPTION                    | CAPACITY                                                       | 2                       | FIRE PUMPS                                                                                                                                        | TBD                                     | TBD                  |                                         |
|   | 6                                   | BILGE PUMP                      | TBD                            | TBD                                                            | 2                       | MANUAL FIRE PUMP                                                                                                                                  | TBD                                     | TBD                  |                                         |
|   | 6                                   | BALLAST PUMP                    | TBD                            | TBD                                                            |                         |                                                                                                                                                   |                                         |                      |                                         |

 FIN STABILISATION

 QTY.
 COMPONENT
 DESCRIPTION

6 2 ACTIVE FIN STABILISERS KONGSBERG AQUARIUS A 100

Г

CAPACITY

-

|                                      | 7        |                                                                |      |                                              | 8                                                          | - |
|--------------------------------------|----------|----------------------------------------------------------------|------|----------------------------------------------|------------------------------------------------------------|---|
|                                      |          |                                                                |      |                                              |                                                            | 1 |
| CATED BOW<br>THRUSTER<br>COMPARTMENT | FOREPEAK | >                                                              |      |                                              |                                                            | 2 |
| 170                                  | 180 190  | 200 210                                                        | 1    |                                              |                                                            | 3 |
|                                      |          |                                                                |      |                                              |                                                            | 4 |
| ×                                    | +        | PROJECT TITLE<br>MARINE<br>DRAWING TITLE                       |      |                                              | X FERRY                                                    | 5 |
|                                      |          | SHEET SIZE<br>ANSI B<br>SCALE<br>1:600<br>DRAWING NO.<br>AP-05 | DRAW | /N BY<br>R.C.<br>KED BY<br>A.B.<br>REV.<br>0 | DATE<br>04/07/2023<br>DATE<br>04/15/2023<br>PAGE<br>3 OF 3 | 6 |
|                                      | 7        |                                                                |      |                                              | 8                                                          |   |