PE Naval Architecture © Marine Engineering Reference Handbook (2022)

ERRATA SHEET

Chapter 1: Fundamentals

1.2 Properties of Materials

1.2.3 Properties of Water at Standard Conditions

Original:

Specific heat, c_{p} :
In I-P units: $\frac{1 \mathrm{Btu}}{\mathrm{lb}-{ }^{-} \mathrm{F}}$ at $68^{\circ} \mathrm{F} \quad$ In SI units: $\frac{4.180 \mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}$ at $20^{\circ} \mathrm{C}$
Density at standard conditions: $\quad \frac{1,000 \mathrm{~kg}}{\mathrm{~m}^{3}}=\frac{62.4 \mathrm{lbm}}{\mathrm{ft}^{3}}$
Specific weight at standard conditions: $\frac{9,810 \mathrm{~N}}{\mathrm{~m}^{3}}=\frac{9,810 \mathrm{~kg}}{\mathrm{~m}^{2} \cdot \mathrm{~s}^{2}}=\frac{62.4 \mathrm{lbf}}{\mathrm{ft}^{3}}$

Updated:

Specific heat, c_{p} :
Density at standard conditions:
In I-P units: $\frac{1 \mathrm{Btu}}{1 \mathrm{lb}-\mathrm{F}}$ at $68^{\circ} \mathrm{F} \quad$ In SI units: $\frac{4.180 \mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}$ at $20^{\circ} \mathrm{C}$
$\frac{1,000 \mathrm{~kg}}{\mathrm{~m}^{3}}=\frac{62.4 \mathrm{lbm}}{\mathrm{ft}^{3}} \quad$ (fresh water)
$\frac{1026 \mathrm{~kg}}{\mathrm{~m}^{3}}=\frac{64.0 \mathrm{lbm}}{\mathrm{ft}^{3}}$ (sea water)
Specific weight at standard conditions: $\frac{9,810 \mathrm{~N}}{\mathrm{~m}^{3}}=\frac{9,810 \mathrm{~kg}}{\mathrm{~m}^{2} \cdot \mathrm{~s}^{2}}=\frac{62.4 \mathrm{lbf}}{\mathrm{ft}^{3}}$

Original:
Schedule 80 Steel Pipe

Double Extra Strong XX Steel Pipe

Nominal Pipe Size	Wall Thickness	Inside Diameter	Flow Area	Pipe Wt. per L.F.	Gallons per L.F.	Water Wt. per L.F.	Total Wt. per L.F.	Moment of Inertia	Section Modulus	Radius of Gyration
in.	in.	in.	$\mathbf{i n}^{\mathbf{2}}$	lb		lb	$\mathbf{l b}$	in 4	in 3	in.
2	0.436	1.503	1.773	9.03	0.174	1.46	10.49	1.310	1.100	0.703
2.5	0.552	1.771	2.462	13.69	0.128	1.07	14.76	2.870	2.000	0.844
3	0.600	2.300	4.153	18.58	0.383	3.20	21.78	5.990	3.420	1.050
4	0.674	3.152	7.799	27.54	0.660	5	33.05	15.300	6.790	1.370
5	0.750	4.063	12.959	38.55	0.674	5.62	44.17	33.600	12.100	1.720
6	0.864	4.897	18.825	53.16	1.499	12.51	$\gamma 5.67$	66.300	20.000	2.060
8	0.875	6.875	37.104	72.42	2.598	21.69	94.11	162.000	37.600	2.760

Copyright © American Institute of Steel Construction Reprinted with permission. All rights reserved

Updated:

Schedule 80 Steel Pipe

Nominal Pipe Size	Wall Thickness	Inside Diameter	Flow Area	Pipe Wt. per L.F.	Moment of Inertia	Section Modulus	Radius of Gyration
in.	in.	in.	in $^{\mathbf{2}}$	lb	in 4	in 3	in.
0.5	0.147	0.546	0.234	1.09	0.020	0.048	0.250
0.75	0.154	0.742	0.432	1.47	0.045	0.085	0.321
1	0.179	0.957	0.719	2.17	0.106	0.161	0.407
1.25	0.191	1.278	1.282	3.00	0.242	0.291	0.524
1.5	0.200	1.500	1.766	3.63	0.391	0.412	0.605
2	0.218	1.939	2.951	5.02	0.868	0.731	0.766
2.5	0.276	2.323	4.236	7.66	1.920	1.340	0.924
3	0.300	2.900	6.602	10.25	3.890	2.230	1.140
4	0.337	3.826	11.491	14.98	9.610	4.270	1.480
5	0.375	4.813	18.185	20.78	20.700	7.430	1.840
6	0.432	5.761	26.053	28.57	40.500	12.200	2.190
8	0.500	7.625	45.640	43.39	106.000	24.500	2.880
10	0.593	9.564	71.804	54.74	212.000	39.400	3.630
12	0.687	11.376	101.590	65.42	362.000	56.700	4.330

Double Extra Strong XX Steel Pipe

Nominal Pipe Size	Wall Thickness	Inside Diameter	Flow Area	Pipe Wh. per L.F.	Moment of Inertia	Section Modulus	Radius of Gyration
in.	in.	in.	in 2	$\mathbf{l b}$	$\mathbf{i n}^{4}$	$\mathbf{i n}^{3}$	in.
2	0.436	1.503	1.773	9.03	1.310	1.100	0.703
2.5	0.552	1.771	2.462	13.69	2.870	2.000	0.844
3	0.600	2.300	4.153	18.58	5.990	3.420	1.050
4	0.674	3.152	7.799	27.54	15.300	6.790	1.370
5	0.750	4.063	12.959	38.55	33.600	12.100	1.720
6	0.864	4.897	18.825	53.16	66.300	20.000	2.060
8	0.875	6.875	37.104	72.42	162.000	37.600	2.760

Based on material copyright © American Institute of Steel Construction. Reprinted with permission. All rights reserved.

Original:

Bending Moment, Vertical Shear, and Deflection of Beams of Uniform Cross Section, Under Various Conditions of Loading

Copyright © American Institute of Steel Construction Reprinted with permission. All rights reserved

	$\begin{array}{\|l} \hline P=\text { concentrated loads, in lb } \\ R_{1}, R_{2}=\text { reactions, in lb } \\ w=\text { uniform load per unit of length, in lb per in. } \\ W=\text { total uniform load on beam, in lb } \\ l=\text { length of beam, in in. } \\ x=\text { distance from support to any section, in in. } \\ E=\text { modulus of elasticity, in psi } \\ \hline \end{array}$	$I=$ moment of inertia, in in ${ }^{4}$ $V_{\mathrm{x}}=$ vertical shear at any section, in lb $V=$ maximum vertical shear, in lb $M_{\mathrm{x}}=$ bending moment at any section, in lb-in. $M=$ maximum bending moment, in lb-in. $y=$ maximum deflection, in in. $k=$ fraction of l to P	
	Simple Beam: Uniform Load to be DIAGRAM ase w, not W $\begin{aligned} & R_{1}=R_{2}=\frac{w l}{2} \\ & V_{\mathrm{x}}=\frac{w l}{2}-w x \\ & V= \pm \frac{w l}{2}\left(\text { when }\left\{\begin{array}{l} x=0 \\ x=l \end{array}\right)\right. \\ & M_{\mathrm{x}}=\frac{w l x}{2}-\frac{w x^{2}}{2} \\ & M=\frac{l^{2}}{8}\left(\text { when } x=\frac{l}{2}\right) \\ & y=\frac{5 W l^{4}}{384 E I} \text { (at center of span) } \end{aligned}$	Simple Beam: Co	Concentrated Load at Any Point $\begin{aligned} R_{1} & =P(1-k) \\ R_{2} & =P k \\ V_{\mathrm{x}} & =R_{1} \quad(\text { when } x<k l) \\ & =R_{2} \quad(\text { when } x>k l) \\ V & =P(1-k) \quad(\text { when } k<0.5) \\ & =-P k \quad(\text { when } k>0.5) \\ M_{\mathrm{x}} & =P x(1-k) \quad(\text { when } x<k l) \\ & =P k(l-x) \quad(\text { when } x>k l) \\ M & =P k l(1-k)(\text { at point of load }) \\ y= & \frac{P l^{3}}{3 E I}(1-k) \times\left(\frac{2}{3} k-\frac{1}{3} k^{2}\right)^{\frac{3}{2}} \\ & \left.\quad \text { at } x=l \sqrt{\frac{2}{3} k-\frac{1}{3} k^{2}}\right) \end{aligned}$
	Simple Beam: Concentrated Load at Center $R_{1}=R_{2}=\frac{P}{2}$ $V_{\mathrm{x}}=V= \pm \frac{P}{2}$ $M_{\mathrm{x}}=\frac{P x}{2}$ $M=\frac{P l}{4}\left(\right.$ when $\left.x=\frac{l}{2}\right)$ $y=\frac{P l^{3}}{48 E I}$ (at center of span)	Simple Beam: Tw Equal Dis	wo Equal Concentrated Loads at istances from Supports $\begin{array}{rlrl} R_{1} & =R_{2}=P & & \\ V_{\mathrm{x}} & =P & & (\text { for } A C) \\ & =0 & & (\text { for } C D) \\ & =-P & & (\text { for } D B) \\ V & = \pm P & & \\ M_{\mathrm{x}} & =P x & & (\text { for } A C) \\ & =P d & & (\text { for } C D) \\ & =P(l-x) & & (\text { for } D B) \\ M & =P d & \\ y & =\frac{P d}{24 E I}\left(3 l^{2}-4 d^{2}\right) \end{array}$ (at center of span)

Updated:

Bending Moment, Vertical Shear, and Deflection of Beams of Uniform Cross Section, Under Various Conditions of Loading

Based on material copyright © American Institute of Steel Construction. Reprinted with permission. All rights reserved.

$P=$ concentrated loads, in lb $\boldsymbol{R}_{1}, \boldsymbol{R}_{2}=$ reactions, in lb $w=$ uniform load per unit of length, in lb per in. $W=$ total uniform load on beam, in lb $l=$ length of beam, in in. $x=$ distance from support to any section, in in. $E=$ modulus of elasticity, in psi	$I=$ moment of inertia, in in ${ }^{4}$ $V_{\mathbf{x}}=$ vertical shear at any section, in lb $V=$ maximum vertical shear, in lb $M_{\mathrm{s}}=$ bending moment at any section, in lb-in. $M=$ maximum bending moment, in lb-in. $y=$ maximum deflection, in in. $k=$ fraction of l to P
Simple Beam: Uniform Load	Simple Beam: Concentrated Load at Any Point $\begin{aligned} R_{1} & =P(1-k) \\ R_{2} & =P k \\ V_{\mathrm{x}} & =R_{1} \quad(\text { when } x<k l) \\ & =R_{2} \quad(\text { when } x>k l) \\ V= & P(1-k) \quad(\text { when } k<0.5) \\ = & -P k \quad(\text { when } k>0.5) \\ M_{\mathrm{x}} & =P x(1-k) \quad(\text { when } x<k l) \\ & =P k(l-x) \quad(\text { when } x>k l) \\ M= & P k l(1-k)(\text { at point of load }) \\ y= & \frac{P l^{3}}{3 E I}(1-k) \times\left(\frac{2}{3} k-\frac{1}{3} k^{2}\right)^{\frac{3}{2}} \\ & \left.\quad \text { at } x=l \sqrt{\frac{2}{3} k-\frac{1}{3} k^{2}}\right) \end{aligned}$
Simple Beam: Concentrated Load at Center $\begin{aligned} & R_{1}=R_{2}=\frac{P}{2} \\ & V_{\mathrm{x}}=V= \pm \frac{P}{2} \\ & M_{\mathrm{x}}=\frac{P x}{2} \\ & M=\frac{P l}{4}\left(\text { when } x=\frac{l}{2}\right) \\ & y=\frac{P l^{3}}{48 E I}(\text { at center of span }) \end{aligned}$	Simple Beam: Two Equal Concentrated Loads at Equal Distances from Supports

Original:

Bending Moment, Vertical Shear, and Deflection of Beams of Uniform Cross Section, Under Various Conditions of Loading (cont'd)

$\begin{aligned} & P=\text { concentrated loads, in lb } \\ & R_{1}, R_{2}=\text { reactions, in lb } \\ & w=\text { uniform load per unit of length, in lb per in. } \\ & W=\text { total uniform load on beam, in lb } \\ & l=\text { length of beam, in in. } \\ & x=\text { distance from support to any section, in in. } \\ & E=\text { modulus of elasticity, in psi } \end{aligned}$	$\begin{aligned} & I=\text { moment of inertia, in } \text { in }^{4} \\ & V_{\mathrm{x}}=\text { vertical shear at any section, in } \mathrm{lb} \\ & V=\text { maximum vertical shear, in } \mathrm{lb} \\ & M_{\mathrm{x}}=\text { bending moment at any section, in lb-in. } \\ & M=\text { maximum bending moment, in lb-in. } \\ & y=\text { maximum deflection, in in. } \end{aligned}$
Simple Beam: Load Increasing Uniformly from One Support to the Other $\begin{aligned} & R_{1}=\frac{W}{3} ; R_{2}=\frac{2}{3} W \\ & V_{\mathrm{x}}=W\left(\frac{1}{3}-\frac{x^{2}}{l^{2}}\right) \\ & V=-\frac{2}{3} W(\text { when } x=l) \\ & M_{\mathrm{x}}=\frac{W x}{3}\left(1-\frac{x^{2}}{l^{2}}\right) \\ & M=\frac{2}{9 \sqrt{3}} W l\left(\text { when } x=\frac{l}{\sqrt{3}}\right) \\ & y=\frac{0.01304}{E I} W l^{3} \end{aligned}$	Cantilever Beam: Load Increasing Uniformly from Free End to Support $\begin{aligned} & R=W \\ & \\ & V=-W(\text { when } x=0) \\ & V_{\mathrm{x}}=-W \frac{(l-x)^{2}}{l^{2}} \\ & \\ & M_{\mathrm{x}}=-\frac{W}{3} \frac{(l-x)^{3}}{l^{2}} \\ & M=-\frac{W l}{3}(\text { when } x=0) \\ & y=\frac{W l^{3}}{15 E I} \end{aligned}$
Fixed Beam: Concentrated Load at Center of Span $\begin{aligned} & R_{1}=R_{2}=\frac{P}{2} \\ & V_{\mathrm{x}}=V= \pm \frac{P}{2} \\ & M_{\mathrm{x}}=P\left(\frac{x}{2}-\frac{l}{8}\right) \\ & M_{\mathrm{x}}=-\frac{P l}{8}\left(\text { when }\left\{\begin{array}{l} x=0 \\ x=l \end{array}\right)\right. \end{aligned}$ $M=+\frac{P l}{8}($ at center of span $)$ MOMENT DIAGRAM	Fixed Beam: Uniform Load SHEAR DIAGRAM $-\frac{w 1^{2}}{12} \sqrt{2 l^{2}}$ MOMENT DIAGRAM $\begin{aligned} & R_{1}=R_{2}=\frac{w l}{2}=\frac{W}{2} \\ & V_{\mathrm{x}}=\frac{w l}{2}-w x \\ & V= \pm \frac{w l}{2}(\text { at ends }) \\ & M_{\mathrm{x}}=-\frac{w l^{2}}{2}\left(\frac{1}{6}-\frac{x}{l}+\frac{x^{2}}{l^{2}}\right) \\ & M=-\frac{1}{12} w l^{2}\left(\text { when }\left\{\begin{array}{c} x=0 \\ x=l \end{array}\right)\right. \\ & M=\frac{w l^{2}}{24}\left(\text { when } x=\frac{l}{2}\right) \\ & y=\frac{W l^{3}}{384 E I} \end{aligned}$

Should be a P, not a W

Updated:

Bending Moment, Vertical Shear, and Deflection of Beams of Uniform Cross Section, Under Various Conditions of Loading (cont'd)

$P=$ concentrated loads, in lb $R_{1}, R_{2}=$ reactions, in lb $w=$ uniform load per unit of length, in lb per in. $W=$ total uniform load on beam, in lb $l=$ length of beam, in in. $x=$ distance from support to any section, in in. $E=$ modulus of elasticity, in psi	$I=$ moment of inertia, in in ${ }^{4}$ $V_{\mathbf{x}}=$ vertical shear at any section, in lb $V=$ maximum vertical shear, in lb $M_{\mathrm{I}}=$ bending moment at any section, in lb-in. $M=$ maximum bending moment, in lb-in. $y=$ maximum deflection, in in.
Simple Beam: Load Increasing Uniformly from One Support to the Other	Cantilever Beam: Load Increasing Uniformly from Free End to Support $\begin{aligned} & R=W \\ & V_{\mathrm{x}}=-W \frac{(l-x)^{2}}{l^{2}} \\ & V=-W(\text { when } x=0) \\ & M_{\mathrm{x}}=-\frac{W}{3} \frac{(l-x)^{3}}{l^{2}} \\ & M=-\frac{W l}{3}(\text { when } x=0) \\ & y=\frac{W l^{3}}{15 E I} \end{aligned}$
Fixed Beam: Concentrated Load at Center of Span MOMENT DIAGRAM	Fixed Beam: Uniform Load

Chapter 1: Fundamentals

New Section Added:

1.22 Sound Decibel Addition: Decibels are logarithmic ratios, two decibel values cannot be added directly together to obtain their sum. Instead, the total level can be calculated by determining the difference between the two levels and adding a correction to the larger of the two using the equation below.

$$
\Sigma\left(L_{1}+L_{2}\right)=L_{1}+10 \log _{10}\left(1+10-\frac{\Delta \mathrm{L}}{10}\right)
$$

where
$L_{1}=$ higher decibel level
$L_{2}=$ lower decibel level
$\Delta \mathrm{L}=\mathrm{L}_{1}-\mathrm{L}_{2}$

Original:

Moment to Change Trim One CM
SI units:
$\operatorname{MTcm} \frac{\Delta B M_{L}}{100 L}=\frac{0.01025 I_{L}}{L} \quad$ (salt water)
$\operatorname{MTcm} \frac{\Delta B M_{L}}{100 L}=\frac{I_{L}}{L} \quad$ (fresh water)

Updated:

Moment to Change Trim One CM
SI units:
$\operatorname{MTcm} \frac{\Delta B M_{L}}{100 L}=\frac{0.01025 I_{L}}{L} \quad$ (salt water)
$\operatorname{MTcm} \frac{\Delta B M_{L}}{100 L}=\frac{I_{L}}{L} \leftarrow($ fresh water $)$ Should be 0.01 lL

Original:

6.3.5 Darcy-Weisbach Equation

$$
h_{L}=f \frac{L}{D} \frac{v^{2}}{2 g}
$$

where

$$
\begin{array}{ll}
h_{f} & \swarrow_{=\text {head loss }} \\
f & =\text { should be hLiction factor, dimensionless } \mathrm{h}_{\mathrm{f}} \\
D & =\text { internal diameter of the pipe } \\
L & =\text { length over which the head loss occurs } \\
\boldsymbol{v} & =\text { fluid velocity } \\
\boldsymbol{g} & =\text { acceleration of gravity }
\end{array}
$$

Updated:

$$
h_{L}=f \frac{L}{D} \frac{v^{2}}{2 g}
$$

where

$$
\begin{array}{ll}
h L & =\text { head loss } \\
f & =\text { friction factor, dimensionless } \\
D & =\text { internal diameter of the pipe } \\
L & =\text { length over which the head loss occurs } \\
v & =\text { fluid velocity } \\
g & =\text { acceleration of gravity }
\end{array}
$$

Original:

6.3.15 Pilot Tubes

Updated:

6.3.15 Pitot Tubes

Added Section 6.3.20 Hydraulic Cylinders

6.3.20 Hydraulic Cylinders

Hydraulic cylinder systems with 2 or more cylinders obey the following laws of similitude that maintain constant pressure and volume (for incompressible fluid):
$\mathrm{F}_{1}{ }^{*} \mathrm{~A}_{1}=\mathrm{F}_{2}{ }^{*} \mathrm{~A}_{2}$
Where $\mathrm{F}=$ force input/output by a hydraulic cylinder and $\mathrm{A}=$ cross-sectional area of the hydraulic cylinder.
$\mathrm{S}_{1} * \mathrm{~A}_{1}=\mathrm{S}_{2} * \mathrm{~A}_{2}$
Where $\mathrm{S}=$ stroke of the hydraulic cylinder.

Original:

Internal Combustion Engines
The mean effective pressure equals net work divided by volumetric displacement. Horsepower is derived from

$$
\mathrm{hp}=(\mathrm{MEP}) \frac{\operatorname{Lan}}{K}
$$

where

$$
\begin{aligned}
& \text { MEP }=\text { mean effective pressure, in } \frac{\mathrm{lb}}{\mathrm{in}^{2}} \text { or } \mathrm{kPa} \\
& \begin{aligned}
& L=\text { stroke, in ft or } \mathrm{m} \\
& a=\text { total piston area, in } \text { in }^{2} \text { or } \mathrm{m}^{2} \\
& n \quad=\text { number of cycles completed per min } \\
& K=33,000 \text { for I-P units or } 0.4566 \text { for SI units } \\
& r_{\mathrm{v}}= \text { compression ratio }=\frac{V_{1}}{V_{2}}=\frac{V_{4}}{V_{3}} \\
& \frac{T_{2}}{T_{1}}=\left(\frac{V_{1}}{V_{2}}\right)^{\mathrm{k}-1} \quad \frac{T_{3}}{T_{4}}=\left(\frac{V_{4}}{V_{3}}\right)^{\mathrm{k}-1} \\
& \frac{P_{2}}{P_{1}}=\left(\frac{V_{1}}{V_{2}}\right)^{\mathrm{k}} \quad \frac{P_{3}}{P_{4}}=\left(\frac{V_{4}}{V_{3}}\right)^{\mathrm{k}}
\end{aligned} . \quad \text { Should be } 0.04472
\end{aligned}
$$

Updated:

Internal Combustion Engines

The mean effective pressure equals net work divided by volumetric displacement. Horsepower is derived from

$$
\mathrm{hp}=(\mathrm{MEP}) \frac{\operatorname{Lan}}{K}
$$

where

$$
\begin{aligned}
& \text { MEP }=\text { mean effective pressure, in } \frac{\mathrm{lb}}{\mathrm{in}^{2}} \text { or } \mathrm{kPa} \\
& L \quad=\text { stroke, in } \mathrm{ft} \text { or } \mathrm{m} \\
& a \quad=\text { total piston area, in } \text { in }^{2}{\text { or } \mathrm{m}^{2}}^{n} \quad=\text { number of cycles completed per min } \\
& K \quad=33,000 \text { for I-P units or } 0.04472 \text { for SI units } \\
& r_{\mathrm{v}}=\text { compression ratio }=\frac{V_{1}}{V_{2}}=\frac{V_{4}}{V_{3}} \\
& \frac{T_{2}}{T_{1}}=\left(\frac{V_{1}}{V_{2}}\right)^{\mathrm{k}-1} \quad \frac{T_{3}}{T_{4}}=\left(\frac{V_{4}}{V_{3}}\right)^{\mathrm{k}-1} \\
& \frac{P_{2}}{P_{1}}=\left(\frac{V_{1}}{V_{2}}\right)^{\mathrm{k}} \quad \frac{P_{3}}{P_{4}}=\left(\frac{V_{4}}{V_{3}}\right)^{\mathrm{k}}
\end{aligned}
$$

Added Bearing Force Equation

7.11 Bearing Force

Bearing Force for rotating shaft with weight spread equally between bearings:

$$
\mathrm{F}_{\mathrm{B}}=0.5 \mathrm{~W}_{\mathrm{R}}\left(1+\left(\mathrm{r} \omega^{2}\right) / \mathrm{g}\right)
$$

where
$F_{B}=$ Bearing Force
$\mathrm{W}_{\mathrm{R}}=$ Rotating Shaft Weight
$\mathrm{r}=$ off-center distance from rotational axis to center of mass
$\omega=$ rate of rotation ($\mathrm{rad} / \mathrm{sec}$)
$\mathrm{g}=$ acceleration due to gravity

Added a new equation under Gear Pitch
Original:

7.13 Gears

7.13.1 Gear Pitch

$$
\begin{aligned}
P & =\frac{N}{d} \\
F_{c} & =\frac{T}{P}
\end{aligned}
$$

where
P = Diametral Pitch
$\mathrm{N}=$ Number of teeth
d $=$ Pitch diameter
$\mathrm{F}_{\mathrm{c}}=$ Gear contact or tangential force
T = Torque

Updated:

7.14 Gears

7.14.1 Gear Pitch

$$
\begin{aligned}
P & =\frac{N}{d} \\
F_{c} & =\frac{T}{P}
\end{aligned}
$$

P = Diametral Pitch
$\mathrm{N}=$ Number of teeth
d $=$ Pitch diameter
$F_{c}=$ Gear contact or tangential force
T = Torque
$\mathrm{Wt}=126050 *(\mathrm{HP} /(\mathrm{RPMp} \mathrm{xd}))$
Where
$\mathrm{Wt}=$ tooth loading
$\mathrm{RPMp}=$ pinion RPM
$d=$ pitch diameter of the pinion

Original:

8.4 Refrigeration

8.4.1 Compression Refrigeration Cycles

Refer to Chapter 4, Thermodynamics, for additional information on compression refrigeration cycles.

Updated:

8.4 Refrigeration

8.4.1 Compression Refrigeration Cycles

Refer to Chapter 7, Thermodynamics, for additional information on compression refrigeration cycles.

